ОРИГИНАЛЬНАЯ СТАТЬЯ

DOI: https://doi.org/10.18599/grs.2022.3.3

УДК 550.823

Палеозойские и мезозойские очаги генерации углеводородов и оценка их роли в формировании залежей доюрского комплекса Западной Сибири

В.И. Исаев 1* , М.Ф. Галиева 1 , Г. Лобова 2 , С.Г. Кузьменков 3 , В.И. Старостенко 4 , А.Н. Фомин 5

Национальный исследовательский Томский политехнический университет, Томск, Россия! ²Независимый эксперт, Висагинас, Литва ³Югорский государственный университет, Ханты-Мансийск, Россия ⁴Институт геофизики им. С.И. Субботина НАН Украины, Киев, Украина

⁵Институт нефтегазовой геологии и геофизики им. А.А. Трофимука СО РАН, Новосибирск, Россия

Настоящими исследованиями решается следующая задача: на базе моделирования очагов генерации палеозойско-мезозойских нефтематеринских формаций определить вероятные источники палеозойских залежей углеводородов (на примере юго-востока Западной Сибири, Томская область). Территория исследований – это земли Останинской группы месторождений: Сельвейкинская площадь глубокого бурения, Останинское и Герасимовское нефтегазоконденсатные месторождения. Объектами исследования являются доюрские толщи, обладающие нефтематеринским потенциалом, в числе которых палеозойские ларинская (S, lr), мирная $(D, {}^3mr)$, чузикская (D,cz), чагинская (D,cg) и кехорегская (C,kh) свиты, а также юрские баженовская (J,bg) и тюменская $(J_{1,2}$ tm) свиты и, соответственно, резервуары коры выветривания и внутреннего палеозоя. Предмет анализа выбран в соответствии с концепцией о геотермическом режиме недр, как о ведущем факторе реализации генерационного потенциала материнских отложений. Методы исследований – цифровое палеотемпературное моделирование и историко-геологический анализ.

Получены результаты и сделаны выводы, касающиеся фундаментальных аспектов проблемы «палеозойской нефти». 1. Источником палеозойских залежей нефти могут быть как породы доманикоидного типа палеозойских свит, так и юрские нефтематеринские формации. Таким образом, может иметь место как восходящая вертикальная межпластовая миграция углеводородов (УВ), так и нисходящая миграция УВ. Поэтому две концепции «главного источника» являются совместимыми и не должны рассматриваться, как нередко, ортодоксально альтернативными. 2. Источником палеозойских залежей газа и газоконденсата являются, скорее всего, только породы доманикоидного типа палеозойских свит. 3. «Палеозойским» источником залежей нефти и газа в доюрском НГК могут быть только палеозойские свиты кровли фундамента (на Останинской группе месторождений – C_1 kh и D_3 cg). 4. «Юрским» источником залежей нефти в доюрском нефтегазоносном комплексе может быть баженовская свита – J_3 bg.

Получены результаты и сделаны выводы, касающиеся прикладных (поисковых) аспектов проблемы. 1. Получены результаты, которые дополнительно аргументируют авторский поисковый критерий нефтегазоносности палеозоя – аномальные геофизические и петрофизические характеристики юрского разреза. 2. Отсутствие залежей УВ в юрском разрезе – это, скорее всего, негативный признак нефтегазоносности палеозоя. 4. Низкая плотность современного теплового потока (меньше 40 мВт/м²) – это, скорее всего, негативный признак залежей нефти в палеозое. 3. Высокие палеотемпературы по отражательной способности витринита (более 175°C) – это, скорее всего, негативный признак нефтяных и газовых залежей в палеозое. 4. Получены основания высказать, что нефтяные залежи в палеозое не могут быть богаче нефтяных залежей в юре.

Ключевые слова: доюрский комплекс, моделирование очагов генерации углеводородов, палеозойско-мезозойские нефтематеринские формации, палеотемпературное моделирование, историко-геологический анализ, фундаментальные и поисковые аспекты проблемы «палеозойской нефти», Западная Сибирь

Для цитирования: Исаев В.И., Галиева М.Ф., Лобова Г., Кузьменков С.Г., Старостенко В.И., Фомин А.Н. (2022). Палеозойские и мезозойские очаги генерации углеводородов и оценка их роли в формировании залежей доюрского комплекса Западной Сибири. Георесурсы, 24(3), с. 17-48. DOI: https://doi.org/10.18599/grs.2022.3.3

ВВЕДЕНИЕ

В Западной Сибири сосредоточена половина прогнозных ресурсов нефти категории Д, Российской Федерации, т.е. ресурсов на территориях с доказанной нефтеносностью. Поэтому Западная Сибирь остается основной базой нефтедобычи России.

Но запасы иссякают, а их прирост не превышает объемы добычи. Правда, в 2020 году из различных источников выросли объемы геологоразведочных работ (ГРР), включая сейсморазведку и параметрическое бурение. Прирост извлекаемых запасов нефти достиг 560 миллионов тонн, а газа 1,6 триллионов кубов, что компенсировало их прошлогоднюю добычу. Для поддержания добычи до 2035 года нужно прирастить запасы, главным образом на малоизученных территориях, не менее чем на 10 миллиардов тонн. Выполнимо ли это? В первом полугодии 2021 года прирост запасов составил 26,4 млн т, а добыли 255 млн т.

^{*}Ответственный автор: Валерий Иванович Исаев e-mail: isaevvi@tpu.ru

^{© 2022} Коллектив авторов

Контент доступен под лицензией Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/)

Россия в 10 раз быстрее проедает запасы, чем успевает их восполнить. По газу темп истощения запасов за последние три года ускорился вдвое (Зимин, 2021).

Актуальным направлением нефтедобывающей отрасли Западной Сибири становится существенный прирост запасов и, соответственно, предотвращение снижения добычи нефти. Обсуждаются два направления – и «в глубь», и «в ширь». Ко второму направлению относится и арктический шельф, освоение которого, в силу комплекса причин, однозначно откладывается, как минимум, на 5 лет. Распределенный фонд недр не предполагает открытия крупных месторождений, а нераспределенный – весьма непривлекательный для недропользователей. А если «в глубь»? Необходимо активно вовлекать в разработку трудноизвлекаемые запасы нефти (ТрИЗ), в частности потенциально богатые залежи в образованиях доюрского комплекса (ДЮК), к которому приурочены скопления с начальными геологическими запасами нефти всех категорий порядка 0,5–1,0 млрд т (Isaev et al., 2019). Полагается, что для юго-востока Западной Сибири (Томская область) освоением образований ДЮК ежегодно можно добывать, начиная с 2025 года, до 1,3 млн т нефти из числа ТрИЗ. Ожидается, что в перспективе палеозойские залежи обеспечат до половины всей областной нефтедобычи (Зимин, 2021).

В 2017 году при поддержке администрации Томской области был заявлен первый проект от ООО «Газпромнефть-Восток» по разработке технологий поисков ТрИЗ углеводородного сырья из доюрских отложений области (Лобова и др., 2018; Карташов, 2021). Для данной территории это не случайно, поскольку большая часть запада Томской области представлена Нюрольской структурно-фациальной зоной (СФЗ) по палеозою (рис. 1). Фациальный профиль девонской системы Нюрольской СФЗ отличается от отложений девона соседних структурно-фациальных зон преобладанием морских отложений, характеризуется наличием в разрезе свит преимущественно карбонатного состава, относимых к рифогенно-аккумулятивному типу осадконакопления, и, соответственно, благоприятных для формирования резервуаров (Исаев, 2007). Поэтому главные надежды администрации Томской области связаны с освоением палеозоя. Специалистами областного департамента прогнозные ресурсы томского палеозоя оцениваются поразному – до нескольких десятков миллиардов тонн жидких углеводородов (УВ) (Карташов, 2021).

Еще в 2014 году, Томская область и Министерство природных ресурсов РФ подписали договор по созданию полигона для отработки технологий поисков и добычи ТРиЗ. В настоящее время решаются вопросы, связанные с правовым статусом будущего полигона. «Но полигон – уже следующий этап, сначала надо создать технологии, которые там будут испытываться» (Карташов, 2021). Для разработки технологий в ПАО «Газпромнефть» было принято решение о создании специальных групп с участием работников НТЦ «Газпром нефть», специалистов из профильных дирекций и добывающих предприятий холдинга, а также инновационных университетов и научных центров¹. В 2018 г. губернатором Томской области поддержан

инвестиционный проект «ПАЛЕОЗОЙ», предполагающий сотрудничество компаний-инвесторов и томского научного сообщества по разработке технологий поисков потенциально продуктивных объектов в отложениях доюрского комплекса. Инвестором выступило дочернее общество ПАО «Газпром нефть» – ООО «Газпромнефть-Восток», имеющее лицензию на право пользования недрами Парабельского участка Томской области.

Часть научного сопровождения взяли на себя ученые Томского политехнического университета. Эти исследовательские работы касались вопросов тектоники, методов потенциальных полей и геохимии. По сообщению ИА Neftegaz.ru² договор о проведении исследований по «ПАЛЕОЗОЮ» подписали ректор Томского политехнического университета П. Чубик и генеральный директор ООО «Газпромнефть-Восток» В. Мисник. Работы ограничивались 2022 годом. Согласно договору, первоочередным объектом исследований определена Нюрольская структурно-фациальная зона с последующим расширением работ на всю территорию Томской области.

Некоторые результаты

Некоторые итоги исследовательских работ отражены в материалах Всероссийской научной конференции «Новые вызовы фундаментальной и прикладной геологии нефти и газа – XX Век» (под эгидой Минобрнауки РФ, РАН, СО РАН, Научного совета РАН по проблемам геологии и разработки месторождений нефти, газа и угля, ИНГГ СО РАН, НГУ), посвященной 150-летию академика АН СССР И.М. Губкина и 110-летию академика АН СССР и РАН А. А. Трофимука (Новосибирск, 14–15 сентября 2021 г.) В материалах конференции (подсекция 2, «Поиски и разведка нефти и газа») приведен только один доклад, в котором установлены и рекомендованы геофизические и петрофизические характеристики юрского разреза как прогностические показатели для поисковой оценки нефтегазоносности доюрского (палеозойского) разреза (Алеева и др., 2021). Серьезный отзыв этому докладу дан академиком А.Э. Конторовичем: «методика требует проверки». Следует заметить, что результаты, озвученные в докладе, были получены инициативными исследованиями и подробно изложены в (Исаев и др., 2021).

В качестве обоснования прогностических показателей поисков палеозойских залежей УВ сформулирована и апробирована в представительном материале гипотеза аномальности петрофизических характеристик транзитных пластов - уникальности «отражения» залежей палеозоя в геофизических параметрах перекрывающего мезозойско-кайнозойского разреза. Как в следствии возможной восходящей, так и нисходящей миграции химически агрессивной смеси УВ-флюидов происходят процессы наложенного эпигенеза, в результате которых горные породы испытывают вторичные преобразования, включая карбонатизацию, фиксируемую каротажом транзитных пластов. В первом случае палеозойские отложения рассматриваются как нефтеаккумулирующий комплекс с высоким самостоятельным нефтегенерационным потенциалом, приводящий к восходящей миграции УВ-флюидов (Ablya et al., 2008; Ступакова и др., 2015; Мельник и др., 2020;

²Новостная лента ИА Neftegaz.ru от 05 марта 2018 г. https://neftegaz.ru/news/view/169610

Коржов и др., 2020). Во втором – посредством геохимической корреляции состава нефтей и битумоидов нефтематеринских пород (Коржов и др., 2013; 2013а; Мадишева и др., 2020), изотопного состава углерода (Голышев и др., 2020) и ЯМР-спектров нефтей (Оздоев и др., 2020) выявляется нисходящая направленность вертикальной межпластовой миграции углеводородов из юрских свит в доюрский комплекс.

О проблеме «главного источника» палеозойской нефти

Таким образом, о направлении вертикальной миграции углеводородных флюидов, а, следовательно, о концепции «главного источника» палеозойской нефти высказываются и обосновываются два варианта, рассматриваемые, не редко, как ортодоксально альтернативные.

Как видим, вариантный выбор фактического материала и применение различных методов их интерпретации приводит к высказыванию и обоснованию двух основных концепций «главного источника» палеозойской нефти. По первой концепции, на основе биомаркерного анализа нефтей, палеозойские отложения рассматриваются как нефтеаккумулирующий комплекс с собственными материнскими толщами, обусловливающими восходящую миграцию углеводородных флюидов. По второй концепции, основанной на корреляции нефтей палеозойских залежей и битумоидов юрских материнских пород, осуществляется нисходящая межпластовая миграция УВ из юрских толщ в доюрские образования.

Настоящими исследованиями ставится следующая задача: на базе палеотемпературного моделирования очагов генерации палеозойско-мезозойских нефтематеринских формаций определить вероятные источники палеозойских залежей углеводородов (на примере юго-востока Западной Сибири).

На территории Западно-Сибирской провинции в настоящее время в палеозойских отложениях открыто более 50 месторождений нефти и газа, непромышленные притоки нефти и нефтепроявления зафиксированы более чем на 100 площадях (рис. 1). Перспективность разработки таких объектов доказана опытом нефтеразведки на юго-востоке Западной Сибири (Томская область). Здесь Чкаловское месторождение эксплуатируется уже не одно десятилетие. С 2005 года разрабатывается Урманское месторождение, где основная часть запасов связана с палеозоем. Эксплуатационный фонд актива включает 53 скважины, которые к настоящему времени в общей сложности дали свыше 2 млн тонн нефти. С коммерческой точки зрения эти объекты являются инвестиционно привлекательными, поскольку локализованы на территориях нефтепромыслов с уже развитой инфраструктурой.

В административном отношении территория исследований расположена в Парабельском районе на юго-западе Томской области (рис. 2).

Результаты совместного моделирования очагов генерации УВ осадочных бассейнов - юрско-мелового и силурийского, нижне-среднедевонского,

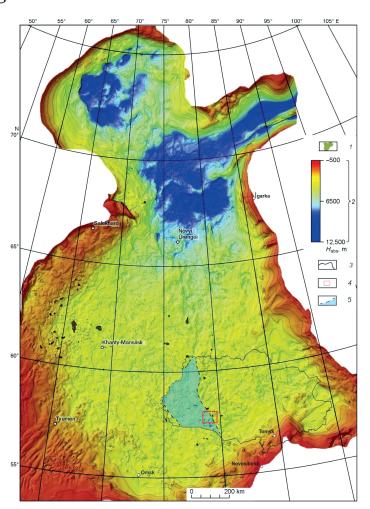


Рис. 1. Положение месторождений УВ доюрского НГК Западно-Сибирской плиты на структурной карте по реперному сейсмическому горизонту, приуроченному к подошве юрских отложений (по Brekhuntsov et al., 2011). 1 – месторождение; 2 – шкала глубин кровли доюрских образований; 3 – административная граница Томской области; 4 – район Останинской группы месторождений; 5 – границы распространения Нюрольской структурно-фациальной зоны

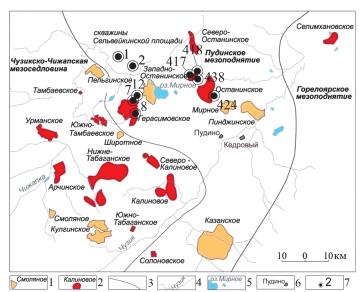


Рис. 2. Схема размещения Останинской группы месторождений УВ Томской области. 1–2 – месторождение и его название, с залежами: 1 - в юрских НГК, 2 - в юрских и доюрском НГК; 3 - контур тектонического элемента II-го порядка платформенного чехла (Конторович, 2002); 4 – речная сеть; 5 – озеро; 6 – населенный пункт; 7 – скважина, вскрывшая образования коренного палеозоя и ее номер

верхнедевонско-нижнекаменноугольного «палеобассейнов» получены на землях Останинской группы месторождений, для палеозойско-мезозойско-кайнозойского разреза Сельвейкинской площади глубокого бурения (Галиева и др., 2020), Останинского (Исаев и др., 2021а) и Герасимовского (Исаев и др., 2021б) нефтегазоконденсатных месторождений.

Три перечисленных участка исследований (Сельвейкинский, Останинский и Герасимовский) являются уникальными. Участки значимо отличаются исходными характеристиками – по наличию промышленных залежей/ притоков УВ в разрезе доюрских образований, по фазовому составу притоков УВ (нефть, газ и газоконденсат), по наличию/отсутствию триасовой коры выветривания, по возрасту скрытых палеозойских отложений (верхний девон, нижний карбон), по наличию/отсутствию выветрелых палеозойских образований, по плотности теплового потока на кровле палеозойского фундамента, по значениям отражательной способности витринита (OCB) в разрезе вскрытого палеозоя. Именно учет и совместное детализированное рассмотрение уникальных исходных характеристик и, как следствие, уникальных заключительных характеристик каждого из участков исследований представили возможность обобщить и сформулировать выводы, касающиеся фундаментальных и прикладных аспектов проблемы «палеозойской» нефти. Здесь же следует заметить, что в настоящей статье приводится уточнение и обобщение методики исследований, включая выверенную блок-схему.

Объектами исследования являются доюрские толщи, обладающие нефтематеринским потенциалом, в числе которых палеозойские ларинская (S,lr), мирная (D,3mr), чузикская (D₂cz), чагинская (D₂cg) и кехорегская (C₂kh) свиты, а также юрские баженовская (J₃bg) и тюменская (J_{1,2}tm) свиты и, соответственно, резервуары коры выветривания и внутреннего палеозоя.

Предмет анализа выбран в соответствии с концепцией о геотермическом режиме недр как о ведущем факторе реализации генерационного потенциала материнских отложений (Гедберг, 1966; Вассоевич, 1967; Конторович и др., 1967; Волкова и др., 1981; Фомин, 1987; Ермаков, Скоробогатов, 1986; Кутас и др., 1991; Курчиков, 1992; Хуторской, 1996; Burshtein et al., 1997; Галушкин, 2007; Горнов, 2009). Ключевым исследуемым геодинамическим параметром является глубинный тепловой поток, определяющий термическую историю потенциально материнских отложений, степень реализации генерационного потенциала органического вещества (ОВ), сингенетичность очагов генерации УВ и аккумулирующих резервуаров (Исаев, 2004). Методы исследований – цифровое палеотемпературное моделирование (Starostenko et al., 2006) и историко-геологический анализ (Kontorovich et al., 2013). Ожидаемые результаты – численная аргументация решения проблемы генезиса «палеозойской нефти» как критерия поисковых зон на доюрские залежи углеводородов.

ОБЩАЯ ХАРАКТЕРИСТИКА ОСТАНИНСКОЙ ГРУППЫ МЕСТОРОЖДЕНИЙ

Повторим, что Останинская группа месторождений административно приурочена к Парабельскому району Томской области. Схема их размещения в пределах Останинской группы показана на рисунке 2, а положение Останинской группы – на рисунке 1.

По материалам Томского филиала ФГУ «Территориальный фонд геологической информации» (ТФ ФГУ «ТФГИ по СФО»), Останинская группа месторождений характеризуется высокой плотностью сейсморазведочных работ – до 1,8 км/км². Вместе с тем реализованная сеть профилей отличается крайней нерегулярностью. Методика и техника полевых работ за период исследований претерпела существенные изменения, что проявилось в значительном различии информативности сейсмических данных разных лет. Изученность глубоким бурением изменяется от 7,8 м/км² (1 скважина на 347 км²) до 47,3 м/км² (1 скважина на 67 км²).

В геологическом строении изучаемой территории принимают участие образования доюрского фундамента и мезозойско-кайнозойского платформенного чехла. Доюрский фундамент представлен отложениями ордовика, силура, девона и карбона. Толщина осадочного чехла изменяется от 2695 м (Останинское месторождение) до 2943 м (Герасимовское месторождение), образований коры выветривания – от 0 м до 241 м (Сельвейкинская площадь), вскрытый разрез пород фундамента – от 20 м до 376 м (Сельвейкинская площадь).

Образования доюрского фундамента и мезозойско-кайнозойского осадочного чехла

Средне-, позднепалеозойское время формирования отложений на территории исследования соответствует миогеосинклинальным условиям. Согласно работе (Исаев, 2012), накопление осадков в ларинское время (S₁lr) происходит в морских условиях. Известняки и терригенные разности ларинской свиты накапливаются на границе шельфа и батиали (Подобина, Родыгин, 2000). Максимально возможная глубина такого палеобассейна могла достигать порядка 500 м. Накопление вулканогенных разностей большеичской (S₂bl) и майзасской (S₂mz) свит идет при глубинах моря от 50 до 150 м. Отрицательные тектонические движения в лохковско-пражское время (D,ls) приводят к углублению палеобассейна (до 500 м) и образованию разреза, сложенного переслаиванием глинистых известняков и аргиллитов. Черные известняки глинисто-кремнистые с прослоями известковых аргиллитов мирной толщи (D,mr) формируются уже в глубоководном бассейне при глубинах порядка 1000 м (Уилсон, 1986). В начале среднего девона образование нижней пачки чузикских осадков (D₂cz) идет при глубинах до 500 м (Подобина, Родыгин, 2000), увеличиваясь до 1000 м при формировании верхней пачки (Уилсон, 1986). Такие условия сохраняются и в чагинское время (D₃cg). В каменноугольное время вплоть до башкирского века (C_1 kh, C_{1-2} sv, C_2 elz) осадки формируются в мелководном море (Исаев, 2012). Затем, в завершающую тектоническую фазу герцинской складчатости, в континентальных условиях идет денудация отложений с размывом накопившейся толщи вплоть до чагинских отложений, по которым в среднем и позднем триасе образуется глинисто-кремнистая кора выветривания, отнесенная по (Решение 6-го Межведомственного стратиграфического совещания..., 2004) к тампейской серии.

Тюменская свита (J_1,tm) , согласно (Kontorovich et al., 2013a), формируется в условиях прибрежно-континентального седиментогенеза с периодами ингрессий

и режимом мелководно-морского, сильноопресненного бассейна глубиной до 25 м. Наунакские отложения (J,nn) формируются в схожих фациальных условиях. Глубина баженовского моря (J₃bg) на территории исследования, по данным (Kontorovich et al., 2013a; Стафеев и др., 2019), достигала 100-200 м.

Установлено (Kontorovich et al., 2014), что накопление нижней части раннемеловых отложений в объеме куломзинской (K,klm) и тарской (K,tr) свит происходило в условиях прибрежных равнин, временами заливавшихся мелководным морем глубиной порядка 25 м. Сохраняются такие условия и при накоплении нижней части киялинской свиты (K,kls) в готериве. В барреме условия накопления меняются на континентальные. Кузнецовские глины (K₂kz) образуются при глубине бассейна 25–100 м. Такой режим сохраняется вплоть до раннего палеоцена (Рычкова, 2006). Начиная с талицкого (Pg,tl) и до настоящего времени на территории исследования сохраняется континентальный режим осадконакопления.

Месторождения и нефтегазоносные комплексы

Останинская группа месторождений относится к Васюганской нефтегазоносной области, Пудинскому нефтегазоносному району. Залежи УВ связаны с доюрским,

нижнеюрским, среднеюрским и верхнеюрским НГК (табл. 1). В этом районе Томской области доказана промышленная нефтегазоносность отложений средней юры и палеозоя (включая кору выветривания (пласт М) и внутрипалеозойские продуктивные горизонты (пласт М,)).

Доюрский НГК связан в основном с зонами дезинтеграции пород в верхней части палеозоя, характеризующейся сложным геологическим строением, обусловленным проявлениями блоковой тектоники и разнообразием литологического состава пород, вмещающих нефть и газ.

Коллекторские свойства палеозойских образований имеют вторичное происхождение (Белозеров, Гарсия Бальса, 2018), причем породы с повышенными емкостными свойствами приурочены к зонам разуплотнения пород, переработанных гидротермальными процессами, генетически обусловленными эпигенетическими процессами в коре выветривания. Залежи нефти и газа приурочены в основном к органогенным известнякам или продуктам их вторичной переработки, а также к образованиям кор выветривания, развивающимся по терригенно-карбонатным породам и глинисто-кремнистым сланцам.

Нижнеюрский НГК слагает серия песчаных пластов ${\rm HO}_{14-16}$ тюменской свиты. С продуктивностью этого НГК связаны Широтное, Южно-Тамбаевское и Герасимовское,

Месторождение	Нефтегазоносный	Пласт, тип притоков	3	Тип
(рис. 2)	комплекс	Промышленные	Непромышленные	флюида
Мирное	Верхнеюрский	Ю ₁ ¹⁻²	-	НГК
	D v	-	Ю	Н
Рыбальное	Верхнеюрский	$\mathrm{HO}_{1}^{1}, \mathrm{HO}_{1}^{3}, \mathrm{HO}_{1}^{4}$	-	Н
	Палеозойский	-	M	Н
	Верхнеюрский	${\rm IO_1}^1, {\rm IO_1}^2$	-	Н
Пинджинское	Среднеюрский	-	Ю ₈	Γ
	Доюрский	-	M	К
	Верхнеюрский	$\text{M}_{1}^{1}, \text{M}_{1}^{2}, \text{M}_{1}^{3}, \text{M}_{1}^{4}$	-	ГК
Останинское	Среднеюрский	Ю ₃ , Ю ₄	-	ГК
	Доюрский	M, M_1	-	НГК
Северо-Останинское	Доюрский	M	-	НГК
	Верхнеюрский	$\mathrm{HO_{1}^{1-2}, HO_{1}^{3}, HO_{1}^{4}}$	-	ГК
		Ю2	-	ГК
		-	Ю ₇	Н
		-	10^{8}	Н
	Среднеюрский	-	Ю ₉	Н
Герасимовское		HO_{10}	-	НГК
r vpavimozenov		HO_{11}	-	ГН
		Ю ₁₂	-	ГН
	Нижнеюрский	HO_{14}	-	ГН
		Ю ₁₅	-	ГН
	Доюрский	M, M_1	-	ГН
	Верхнеюрский	Ю ₁ ¹⁻²	-	НГК
Сепимуановское	Берхнеюрский	Ю ₁ ³⁻⁴	-	ГН
Селимхановское	Среднеюрский	-	IO_2	Н
	Доюрский	M	-	НГК
Пельгинское	Верхнеюрский	Ю ₁	-	ГН
Тамбаевское	Среднеюрский	-	$\mathrm{IO}_6,\mathrm{IO}_7$	ГН
Тамоаевское	Доюрский	M	-	ГН
Южно-Тамбаевское	Нижнеюрский	-	10_{14}	Н
10 MHU- I AMUAUBUKUU	Доюрский	M, M_1	-	ГН
	Среднеюрский	W_{13}	-	НГК
		-	10_{10}	Н
Широтное	Нижнеюрский	-	M_{15}	ГН
		-	W_{16}	Н
Селимхановское Пельгинское Тамбаевское Южно-Тамбаевское	Доюрский		M	НГК

Табл. 1. Нефтегазоносность Останинской группы месторождений (по материалам ТФ ФГУ «ТФГИ по СФО», 2018). Тип флюида: Γ – газ, H – нефть, ΓK – газоконденсат, $H\Gamma K$ – нефтегазоконденсат, ΓH – газ и нефть

месторождения, расположенные на юго-западе района исследований. Зона продуктивности нижнеюрского НГК территориально совпадает (за исключением Герасимовского месторождения) с распространением нефтематеринской тогурской свиты (J₁tg) (рис. 3). Среднеюрский НГК связан с тюменской свитой и включает в себя продуктивные пласты Ю₂₋₁₃. Верхнеюрский НГК соотносится с наунакской (васюганской) свитой и включает в себя продуктивные пласты $\mathrm{H}_{1}^{1}, \mathrm{H}_{1}^{2}, \mathrm{H}_{1}^{3}$ и H_{1}^{4} . Данный НГК содержит основной объем выявленных в пределах района запасов углеводородного сырья. В нем выявлены залежи нефти, газа и конденсата на Рыбальной, Герасимовской, Останинской, Северо-Останинской, Западно-Останинской, Мирной, Селимхановской, Пельгинской и Пинджинской площадях. Пласты литологически не выдержаны по площади. Коллекторы пластов группы Ю, представлены мелко- и среднезернистыми песчаниками с глинистым и карбонатным цементом. Выявленные залежи являются пластово-сводовыми с элементами тектонического и литологического экранирования. Нижнемеловой НГК связан с песчаными пластами киялинской, тарской и покурской (К1, pk) свит. В изучаемом районе этот комплекс имеет подчиненное значение. Притоки воды с растворенным газом из пластов ΠK_{18-20} , A_{1-2} , B_{1-2} получены на Мирном

месторождении в скважинах 410, 411 и в скважине 421 Останинского месторождения (пласт Б₂).

Нефтематеринские формации

Основной нефтепроизводящей формацией Западно-Сибирской нефтегазоносной провинции является верхнеюрская морская баженовская свита (J₃bg), с преимущественной концентрацией рассеянного органического вещества (РОВ) сапропелевого типа C_{opr} 5–12 % (Kontorovich et al., 2009), а в районе Останинской группы – C_{opp} 9–12 % (Конторович, 2002). Эта формация определяет перспективы нефтегазоносности верхне-, средне-, нижнеюрского НГК, а также, возможно, доюрского НГК. Свита сложена карбонатно-глинисто-кремнистыми черными битуминозными аргиллитами титонского возраста.

В юго-западной части района исследований (рис. 2, 3; месторождения Широтное, Тамбаевское и Южно-Тамбаевское) получила развитие тогурская свита (J,tg), с которой связывают нефтегазоносность средне-, нижнеюрского и палеозойского НГК (Лобова, 2013). Свита представляет собой типичные озерные отложения с РОВ гумусового типа, содержание $C_{_{
m ODF}} - 1,50-5,00~\%$ (Конторович, 2002).

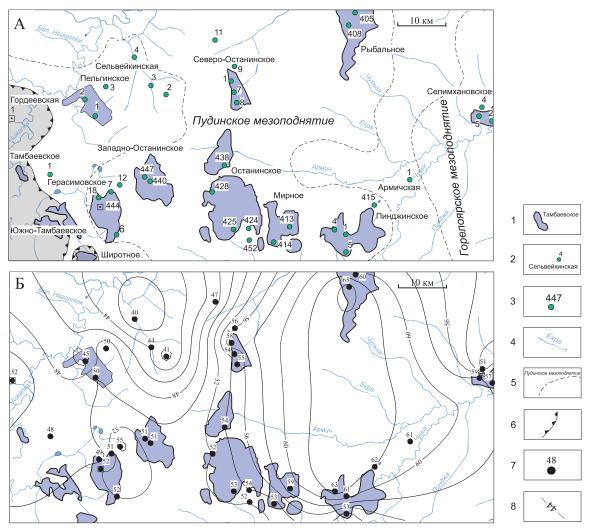


Рис. З. Обзорная схема (А) и карта распределения плотности современного теплового потока (Б) Останинской группы месторождений. А: 1 – контур месторождения УВ; 2 – площадь бурения; 3 – скважина палеотемпературного моделирования, номер скважины; 4 – речная сеть; 5 – тектонические структуры ІІ порядка (Конторович, 2002); 6 – граница распространения тогурской свиты. Б: 7 – скважина, расчетное значение плотности теплового потока (мВт/м²); 8 – изолинии значений плотности теплового потока

В качестве нефтематеринской свиты для залежей доюрского, нижне-, средне-, верхнеюрского НГК рассматривают континентальные аргиллиты тюменской свиты (J, tm) (Конторович и др., 1995; Бордюг, 2012). Концентрация C_{opp} в них составляет от десятых долей до 2 %.

Непосредственно палеозойские отложения стали рассматриваться как потенциально нефтематеринские в 1970-х гг., когда был получен приток нефти из палеозойских коллекторов на Малоичской площади. Высокий генерационный потенциал обусловлен присутствием в разрезе палеозоя высокоуглеродистых пород доманикоидного типа. Согласно (Запивалов, Исаев, 2010; Фомин, 2011), доманикоиды выявлены в Западной Сибири на четырех стратиграфических уровнях $(S_1, D_1^1, D_1^{2-3}, D_3)$ в шести свитах: пономаревской (S_1pn) , кыштовской (D_11kt) , комбарской $(D_1^{2-3}kb)$, варьеганской $(D_1^{2-3}vr)$, лугинецкой $(D_3 lg)$ и чагинской $(D_3 cg)$, из которых в изучаемом районе интерес представляет только последняя. Она сложена черными и темно-серыми кремнедоломитами, кремнеаргиллитами, глинистыми и кремнистыми доломитами с прослоями доломитовых известняков и радиоляритов. Породы свиты содержат ураноносный кероген, что позволяет рассматривать этот стратон в качестве источника УВ (Запивалов, Исаев, 2010).

Вместе с тем, породы доманикоидного типа выявлены на локальных участках развития ларинской (S₁lr), мирной (D_1 ³mr), чузикской (D_2 сz) и кехорегской (C_1 kh) свит. Сводная характеристика нефтематеринских формаций приведена в табл. 2.

Тепловое поле района исследований

Принимая концепцию о геотермическом режиме недр как о ведущем факторе реализации генерационного потенциала материнских отложений, в свое время авторами (Isaev et al., 2019a) выполнены расчеты плотности теплового потока для разрезов 35 поисково-разведочных и 2

параметрических скважин на территории исследования (рис. 3). Полученные значения теплового потока трактуются как квазистационарные, начиная с юрского времени.

Этот сценарий геодинамических условий, начиная с юрского времени, согласуется с ранее установленной квазистационарностью теплового потока на кровле палеозойского фундамента (Ермаков, Скоробогатов, 1986; Дучков и др., 1990; Курчиков, 2001). Позже показано (Исаев и др., 2018а), что даже в зоне южного сегмента Колтогорско-Уренгойского палеорифта нет «следов» возможного аномально высокого теплового потока в конце мелового периода (Западная Сибирь..., 2000).

На карте распределения теплового потока (рис. 3Б) наблюдаются следующие аномальные особенности: «положительная аномалия», «градиентная зона», «отрицательная аномалия», «заливообразная конфигурация изолиний».

В восточной части района месторождения УВ приурочены к яркой градиентной зоне, окаймляющей крупную положительную аномалию. Здесь расположено 6 месторождений: Рыбальное, Селимхановское, Пинджинское, Мирное, Останинское, Северо-Останинское, что составляет 50 % от общего числа месторождений на изучаемой территории. В зоне заливообразной конфигурации изолиний находится 3 месторождения (25 %) – Пельгинское, Герасимовское, Западно-Останинское. Примечательно, что в зоне отрицательной аномалии теплового потока в северо-западной части территории скопления УВ отсутствуют. Таким образом, 9 месторождений (75 %), расположенных на изучаемой территории, приурочены к аномальным особенностям распределения теплового потока.

Обособляются от аномальных особенностей теплового потока месторождения Южно-Тамбаевское и Тамбаевское, в пределах которых вскрыты залежи с промышленными притоками УВ. Интересно отметить,

Название формации	Индекс	Период накопления, млн лет назад	Продолжительность накопления, млн лет	Литология
Баженовская свита	J ₃ bg	151,2-145,8	5,4	Черные, буровато-черные, битуминозные аргиллиты с прослоями глинистых известняков
Тюменская свита	J ₁₋₂ tm	208-162,9	42,1	Серые песчаники, алевролиты и аргиллиты с прослоями углей
Тогурская свита	J ₁ tg	182,7-178,4	4,3	Аргиллиты темно-серые, зеленоватые с прослоями алевролита
Кехорегская свита	C_1kh	358,9-326,2	32,7	Темно-серые алевролиты, аргиллиты, прослои известняков: окремнение
Чагинская свита	D ₃ cg	382,7-358,9	23,8	Верхняя подсвита: кремни, радиоляриты, кремнеаргиллиты, кремнеизвестняки, окремненные аргиллиты Нижняя подсвита: черные, черно-коричневые, кремнистые известняки, аргиллиты
Чузикская свита	D ₂ cz	390,5-382,7	7,8	Верхняя подсвита: известняки глинистые с примесью кремнезема Нижняя подсвита: известняки темно-серые детритовые, глинистые
Мирная свита	D ₁ ³ mr	407,6-393,3	14,3	Известняки темно-серые до черных глинистые, глинисто-кремнистые с прослоями известковых аргиллитов
Ларинская свита	Sılr	443,4-427,4	16	Известняки доломитизированные с линзами аргиллитов, песчаников

Табл. 2. Формации, обладающие нефтематеринским потенциалом в районе Останинской группы месторождений (материалы ТФ ФГУ «ТФГИ по СФО», с использованием (Решение 6-го Межведомственного стратиграфического совещания..., 2004; Решения совещания по рассмотрению и принятию региональной стратиграфической схемы, 1999))

что именно эти объекты расположены в границах распространения потенциально материнской нижнеюрской тогурской свиты (J,tg).

Можно предположить, что вклад каждого из источников («юрского», «палеозойского») может быть разным в зависимости и от «видимых» признаков месторождения/ площади глубокого бурения: 1) величины плотности современного теплового потока (квазистационарного с юрского времени); 2) величины ОСВ вскрытых доюрских образований; 3) возраста коренных отложений, вскрытых в кровле фундамента (пермь-триас, карбон, девон, силур).

По перечисленным признакам различаются Сельвейкинская площадь глубокого бурения, Останинское и Герасимовское нефтегазоконденсатные месторождения. Как представляется, анализ результатов исследований такой выборки позволит более однозначно и подробно оценивать возможность вертикальной миграции углеводородных флюидов, ее направленность и, как следствие, оценивать альтернативные концепции «главного источника» палеозойских залежей УВ.

На месторождениях Останинское и Герасимовское, расположенных в радиальном обрамлении Сельвейкинской площади, доюрские пласты М и М,, в отличие от Сельвейкинской площади, содержат промышленные залежи газа и нефти.

Месторождения интересны тем, что, с одной стороны, характеризуются высокими значениями плотности современного теплового потока, превышающими современный тепловой поток Сельвейкинской площади на 12–14 мВт/м² (рис. 3Б). С другой стороны, на этих месторождениях для палеозойских образований (D₃-C₁) по ОСВ установлена градация катагенеза MK_2 , (R^0 vt=1,05-1,17), что соответствует палеотемпературам 155-160°C. Это ощутимо меньше (на 15–20°C), чем палеотемпературы по ОСВ палеозойских образований в разрезе Сельвейкинской площади (175°C). Особый интерес к Герасимовскому месторождению обусловлен следующим: в отличие от Сельвейкинской площади и Останинского месторождения, на которых вскрытая кровля палеозоя представлена девонскими отложениями (D₃), на Герасимовском кровля палеозоя сложена образованиями карбона (С1). Кроме того, на нём доюрский НГК представлен двумя резервуарами: выветрелого (горизонт М) и коренного (М,) палеозоя. Триасовая кора выветривания, играющая ключевую роль в генезисе резервуаров (Белозеров, Гарсия Бальса, 2018), формировалась в период 213–208 млн лет назад, однако была подвергнута денудационным процессам и не сохранилась.

МЕТОДИКА ИССЛЕДОВАНИЙ

В качестве инструмента исследований применяется хорошо апробированный метод палеотемпературного моделирования (Исаев и др., 2018; Isaev et al., 2018), основанный на численном решении уравнения теплопроводности горизонтально-слоистого твердого тела с подвижной верхней границей. В математическую модель непосредственно включены «местный» климатический вековой ход температур на земной поверхности (рис. 4), начиная с позднего ордовика (449,1-0 млн лет назад), как краевое условие, и палеотемпературы из определений OCB, как «наблюденные».

С раннемелового времени (120-0 млн лет назад) «местный» вековой ход для юго-востока Западной Сибири построен на основе обобщения экспериментальных определений и палеоклиматических реконструкций (Исаев и др., 2016).

Для «палеобассейнов» верхнее граничное условие модели – «местный» вековой ход температур на поверхности Земли – дополняется палеоклиматическими реконструкциями (Scotese, 2016), основанными на совмещении анализа литологических и палеонтологических индикаторов климата, а также изотопного анализа кислорода, начиная с позднего ордовика (449,1–120 млн лет назад).

Этапы моделирования, входные параметры модели и выходные данные последовательно изображены в виде блок-схемы на рис. 5.

Параметризация осадочного разреза принимается в соответствии с литолого-стратиграфической разбивкой скважины. Для задания теплопроводности пород используются петрофизические зависимости теплопроводности осадков от их литологии и плотности.

На первом этапе моделирования, учитывая квазистационарность теплового потока с юрского времени, находится однозначное решение обратной задачи геотермии (рис. 5, блоки 1-6). Для определения теплового потока из основания осадочного разреза используются в качестве «наблюденных» измерения температур в юрском разрезе, полученные при испытаниях скважин и геотемпературы, пересчитанные из определений ОСВ юрских отложений.

На втором этапе моделирования стратиграфическая разбивка дополняется реконструкцией разреза, не вскрытого скважиной. Доюрский тепловой поток определяется путем решения обратной задачи геотермии с использованием измерений ОСВ палеозойских отложений (рис. 5, блоки 7-11). Резкое снижение плотности теплового потока в триасе, ознаменовавшем окончание герцинского времени (Конторович и др., 1975), описано с помощью математической функции, обладающей максимальной скоростью уменьшения значения, уравнением дуги – четверти окружности. В результате получено значение теплового потока на ключевые моменты геодинамической истории разреза, начиная с силура (рис. 5, блоки 12–13). Известно, что в период с позднего ордовика по триас фиксируется смена тектонических обстановок (Конторович и др., 1975; Kontorovich, 2007), а триас – это становление Сибирского мантийного плюма и развитие вулканогенных формаций (Dobretsov, 2008), что должно сопровождаться вариациями глубинного теплового потока. Однако в работах по геологии и тектонике палеозоя Западной Сибири, термохимической модели Сибирского плюма нет количественных оценок вариаций теплового палеопотока, что можно было бы учесть в параметрах модели. Поэтому приходится на данном этапе исследований ограничиться условием стационарности теплового потока с раннего силура по триас и выполнить его количественную оценку методом решения обратной задачи геотермии.

Тем не менее, оценка плотности глубинного теплового потока в силурийско-девонско-карбоновое время (223–258 мВт/м²) получена аномально высокой, и эта оценка в принятой кондуктивной модели теплопереноса по существующим представлениям выглядит завышенной. Действительно, плотность современных тепловых

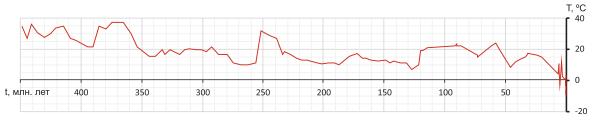


Рис. 4. Верхнее граничное условие параметрической модели – вековой ход температур земной поверхности на юго-востоке Западной Сибири

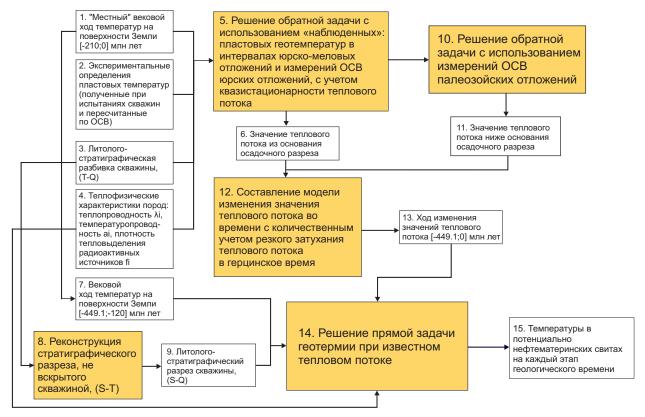


Рис. 5. Блок-схема этапов восстановления термической истории потенциально нефтематеринских юрских и доюрских толщ

потоков в осадочном чехле редко превосходит 150 мВт/м², а значения более 200-300 мВт/м² характерны для зон тектоно-магматической активизации континентов, срединно-океанических хребтов и переходных зон, в условиях преимущественно конвективного теплопереноса. Однако для территории наших исследований, имеющей депрессионный тип разреза, расположенной в стабильной области Западно-Сибирской плиты, характерна подчиненная роль конвективного механизма выноса глубинного тепла по сравнению с кондуктивным, его роль в суперпозиции может не превышать 1 % (Хуторской, 1996).

Высокие значения R⁰vt, определившие аномально высокий тепловой поток в доюрское время, могли быть созданы и локальной по времени эндогенной гидротермальной активностью в нижней юре, как это было, например, на Уренгойском газоконденсатном месторождении (Галушкин, 2007). Однако в районах южнее Широтного Приобья в около юрское время не отмечаются значительные интрузивные процессы в фундаменте, сопровождающиеся горячими эндогенными гидротермами. Здесь в это время гидротермальная деятельность имела место, но ее природа иная, приводящая к экзогенному метасоматозу - формированию коллекторов в верхней части палеозойского фундамента (Белозеров, Гарсия Бальса, 2018).

Таким образом, изложенное выше может свидетельствовать как о корректности авторской модели теплопереноса, так и о известной дискуссионности столь высокой интенсивности расчетного теплового потока на протяжении силура, девона и карбона. Как будет показано ниже в результатах палеореконструкций, в периоды постоянного теплового потока (с силура по пермь – около 250 мBт/м^2 , с юры по настоящее время – около 50 мBт/м^2) отмечаются последовательные тектонические погружения бассейна амплитудой до 4200 и 2400 м, соответственно. Причем, в эти периоды положение изотерм закономерно остается субгоризонтальным. В триасе, в период инверсии амплитудой до 1000 м, изотермы погрузились амплитудой 1500-3000 м.

Далее, решением прямых задач при известном тепловом потоке рассчитываются температуры в каждой из нефтематеринских свит на ключевые моменты геологического времени (рис. 5, блоки 14–15). Анализ результатов моделирования выполняется исходя из динамики геотемператур в разрезе, начиная с силурийского времени – 450 млн лет назад.

Ключевым фактором, определяющим реализацию генерационных возможностей формации, являются продолжительность и температурный режим главной фазы нефтеобразования (ГФН), главной зоны нефтеобразования (ГЗН), так называемое «нефтяное окно» — 90—130°С. Значительную роль в формировании залежей УВ играет и главная фаза газообразования (ГФГ), которая характеризуется наибольшей интенсивностью образования УВ газов, преимущественно метана и газоконденсата, более 190°С — разрушительные для УВ температуры (Неручев и др., 1973; Burshtein et al., 1997).

В формировании нефтегазоносности доюрского фундамента участвуют два резервуара: коры выветривания/ выветрелого палеозоя и коренного палеозоя. Первый (горизонт М) сформировался в период 213—208 млн лет назад и существует до нашего времени. Резервуар верхней части коренного палеозоя (М₁) обусловлен преимущественно эпигенетическими процессами в коре выветривания. Этот резервуар (вторичные коллекторы) сформировался не раньше 213—208 млн лет назад и существует до нашего времени. Палеотемпературы горизонта М не превышали 120°C, а М₁ – 130°C (Isaev et al., 2019а).

Анализ периодов «работы» катагенетических очагов генерации нефти (ГФН, ГЗН), газа и газоконденсата (ГФГ, ГЗГ) в каждой фанерозойской потенциально материнской свите сопоставляется с временем формирования палеозойских резервуаров. Дается оценка возможности аккумуляции и сохранности углеводородов в виде залежей палеозойских пластов.

ИССЛЕДОВАНИЯ НА СЕЛЬВЕЙКИНСКОЙ ПЛОЩАДИ

Характеристика объекта исследования и его параметризация

Сельвейкинское локальное поднятие в тектоническом плане приурочено к зоне сочленения Пудинского мезоподнятия и Чузикско-Чижапской мезоседловины (рис. 2 и 3). По отражающему горизонту Φ_2 (кровля доюрских образований) поднятие представляет собой сложную по форме брахиантиклинальную складку с изогнутой (в плане) осью северо-северо-западного направления. В пределах оконтуривающей сейсмоизогипсы (-2780 м) размеры поднятия составляют 14x3,5 км. Амплитуда достигает 90 м. Поднятие осложнено двумя куполами, оконтуривающимися по сейсмоизогипсе -2740 м. По горизонту Па (подошва баженовской свиты) Сельвейкинское

поднятие имеет меньшие размеры (9х3 км) и амплитуду (65 м) и представляет собой простую по форме брахискладку северо-западного простирания. Глубокое поисковое бурение двух скважин на Сельвейкинской площади вскрыло образования доюрского фундамента – коренного палеозоя (рис. 2).

Скважина 1, расположенная в пределах юго-восточного купола, пробурена до глубины 3187 м с забоем в палеозойских отложениях. По скважине керн отбирался в баженовской J₃bg, васюганской J₃vs, тюменской J₁tm свитах и в отложениях палеозоя. Доюрские образования вскрыты на глубине 2822 м. В их кровле залегает кора выветривания (интервал 2822–2860 м), представленная брекчированными глинистыми породами, песчаниками белыми и серыми, выветрелыми, перемятыми. Ниже разрез сложен известняками темно-серыми, черными, неравномерно глинистыми, участками комковатыми, с многочисленными неориентированными трещинами, залеченными кальцитом. В известняках встречаются прослойки черных аргиллитов и серых, голубовато-серых песчаников, плотных, крепких. Признаков нефтегазоносности в доюрских образованиях по керну не отмечается. В васюганской и тюменской свитах по керновым данным признаков УВ также не встречено. В процессе бурения с помощью испытателя пластов опробовано 4 объекта в палеозое и низах тюменской свиты, которые оказались по результатам опробования «сухими» (табл. 3).

Скважина 2, расположенная на юго-восточной переклинали поднятия, пробурена до глубины 3298 м. По скважине производился отбор керна из баженовской, васюганской, тюменской свит и палеозоя. Васюганская (наунакская J₂nn) свита представлена песчаниками серыми, светло-серыми, мелко- и среднезернистыми, среднесцементированными, слюдистыми, с включениями обугленных растительных остатков, участками слоистых за счет наличия тонких пропластков аргиллитов и алевролитов. В интервале 2595,5-2602,5 м поднято 0,8 м песчаника с запахом нефти. Кора выветривания вскрыта в интервале 2901-2922 м. По керну - это известково-кремнистые породы, светло-серые и белые, легкие, пористые, пелитоморфные. Среди этих пород прослеживаются туфогенные песчаники. Коренные породы палеозоя определены как известняки, участками окремнелые, светло-бурые,

Свита (горизонт, пласт)	Интервал, м	Тип флюида	Дебит, м ³ /сут
	Сквах	кина Сельвейкинская 1	
Тюменская J₃tm + Кора выветривания	2793-2846	«Cyxo»	-
Кора выветривания (пласт М) + Чагинская D_3 cg (пласт M_1)	2846-2886	«Cyxo»	-
Чагинская D_3 cg (пласт M_1)	2876-2957	«Cyxo»	-
Чагинская D_3 cg (пласт M_1)	2974-3045	«Cyxo»	-
	Сквах	кина Сельвейкинская 2	
Васюганская Ј ₃ vs (Ю1)	2605-2631	«Cyxo»	
Кора выветривания (пласт М)	2902-2905	Разгазированная пластовая вода, свободный газ	3,4
Чагинская D_3 сg (пласт M_1)	2925-2932	Разгазированная пластовая вода	22,7
Чагинская D_3 cg (пласт M_1)	2940-2950	Разгазированная пластовая вода	11,2
Чагинская D_3 сg (пласт M_1)	3010-3020	Пластовая вода	6,7
Чагинская D_3 сg (пласт M_1)	3088-3100	Пластовая вода (практически «сухо»)	0,3

Табл. 3. Результаты опробования Сельвейкинских скважин, вскрывших доюрские отложения (материалы ТО ФБУ «ТФГИ по СФО»)

брекчированные, тонкослоистые. По многочисленным трещинам отмечаются тектонические подвижки с амплитудой перемещения до 2-3 см, а также кварцевые и кальцитовые жилки.

В процессе бурения скважины было опробовано 6 интервалов: один в пределах горизонта Ю, и пять в палеозое (табл. 3). По скважине 2 Сельвейкинской площади установлены газопроявления в выветрелых породах (пласт М).

Выбор скважины Сельвейкинская 2 для выполнения целевого палеотемпературного моделирования обусловлен наличием определений геотемператур (по ОСВ) как в юрском, так и доюрском интервалах разреза, а также притоков в скважину флюида из доюрских горизонтов М (кора выветривания) и М, (кровля коренного палеозоя).

Напомним, что Сельвейкинская площадь характеризуется минимальными значениями плотности современного теплового потока (40-41 мВт/м²) на фоне высоких значений Герасимовского (49–54 мВт/м²) и Останинского (52–54 мВт/м²) месторождений. С другой стороны, на этих объектах для палеозойских образований (D₃-C₁) по ОСВ установлена градация катагенеза МК, $(R^0vt=1,05-1,17)$, что соответствует палеотемпературам 155-160°C. Это ощутимо меньше (на 15-20°C), чем палеотемпературы по ОСВ палеозойских образований в разрезе Сельвейкинской площади (-175°C).

Параметризация осадочного разреза скважины Сельвейкинская 2 принята в соответствии с литолого-стратиграфической разбивкой (материалы ТФ ФБУ «ТФГИ по СФО»). Разбивка дополнена реконструкцией стратиграфического разреза, включая силурийские отложения, не вскрытые скважиной (табл. 4).

В районе Сельвейкинской площади получил развитие депрессионный тип разреза. В котором присутствуют два перерыва в осадконакоплении. Первый, непродолжительный по времени, перерыв соответствует первой половине эйфельского века. Второй перерыв начался в среднекаменноугольном отделе. Он занял более продолжительное время (100,2 млн лет) и сопровождался размывом каменноугольных отложений - елизаровской C_2 elz, средневасю ганской C_1 , sv и кехорегской C_1 kh свит. Девонские отложения перекрыты корой выветривания. В результате двухэтапного расчета плотности теплового потока (рис. 5, блоки 5 и 10) получены значения теплового потока, начиная с силура. При решении обратных задач геотермии, как на первом, так и на втором шаге, «невязка» расчетных и измеренных (наблюденных) геотемператур не превысила $\pm 2^{\circ}$ С (табл. 5, рис. 6), т.е. соответствует оптимальной.

Анализ результатов моделирования

Восстановление седиментационной (структурнотектонической) и термической истории путем решения прямых задач геотермии с известным тепловым потоком выполнялось для всех четырех вышеперечисленных палеозойских потенциально нефтематеринских свит, а также для юрских – баженовской и тюменской свит (табл. 6, рис. 7).

Ключевыми факторами, определяющими реализацию генерационных возможностей формации, являются продолжительность и температурный режим ГФН/ГЗН, так называемое «нефтяное окно» – 90–130°С. Значительную роль в формировании залежей УВ играет и ГФГ, которая характеризуется наибольшей интенсивностью образования УВ газов, преимущественно метана и газоконденсата. Напомним, что более 190°С – разрушительные для УВ температуры.

В формировании нефтегазоносности доюрского фундамента участвуют два резервуара: коры выветривания и коренного палеозоя. Первый (горизонт М) сформировался в период 213-208 млн лет назад и существует до нашего времени (в скважине 2 вскрытая мощность 21 м). Геотемпературы горизонта М не превышали 110°. Резервуар верхней части коренного палеозоя (мощностью до 400-500 м, вскрытая мощность - 376 м) генетически обусловлен процессами в коре выветривания. Он (вторичные коллекторы) сформировался не раньше 213-208 млн лет назад и существует до нашего времени, его геотемпература не превышала 115°.

Вместе с тем допускаются концепции вертикальной межпластовой миграции УВ, включая миграцию вниз по разрезу. Анализ периодов «работы» очагов генерации нефти (ГФН), газа и газоконденсата (ГФГ) в каждой из перечисленных выше потенциально материнских свит (табл. 6, рис. 7) позволяет сделать вывод о возможности аккумуляции и сохранности залежей УВ в резервуарах коры выветривания и коренного палеозоя.

Ларинская свита (S₁lr) находилась в ГФН недолго, 2,5 млн лет (422,8–420,3 млн лет назад), в $\Gamma\Phi\Gamma$ – 9,3 млн лет (420,3–411 млн лет назад). Вероятно, нефтяной потенциал ларинского источника исчерпан 420,3 млн лет назад, а газовый потенциал – 411 млн лет назад. 411 млн лет назад свита вошла в зону деструктивных для УВ геотемператур, превышающих 190°С, и находилась в ней почти 250 млн лет (411–162,9 млн лет). Совершенно очевидно, что ларинские УВ не могли аккумулироваться в резервуарах коры выветривания и внутреннего палеозоя.

Мирная свита (D₁mr) побывала в ГФН сравнительно недолго, 4,3 млн лет (387–382,7 млн лет назад), в ГФГ-18,7 млн лет (382,7–364 млн лет назад). Нефтяной потенциал мирнинского источника с большой вероятностью исчерпан 382,7 млн лет назад, газовый потенциал – 364, т.е. 364 млн лет назад свита вошла в зону деструкции УВ и находилась в этой зоне до 213 млн лет назад (более 150 млн лет). Очевидно, что мирнинские УВ не могли аккумулироваться в резервуарах коры выветривания и внутреннего палеозоя.

Чузикская свита (D_{s} сz) находилась в ГФН 14 млн лет (376-362 млн лет назад), в $\Gamma\Phi\Gamma - 26 \text{ млн лет } (362-336)$ млн лет назад), т.е. 336 млн лет назад свита вошла в зону деструкции УВ и находилась в этой зоне до 265,1 млн лет назад (почти 71 млн лет). Очевидно, что чузикские УВ не могли заполнять резервуары коры выветривания и внутреннего палеозоя, которые сформировались не раньше 213-208 млн лет назад.

Чагинская свита (D₃cg) была в ГФН на протяжении 17 млн лет (уже 347–330 млн лет назад), в $\Gamma\Phi\Gamma$ – 64,9 млн лет (330–265,1 млн лет назад). Нефтяной потенциал чагинского источника с большой вероятностью исчерпан 330 млн лет назад, газовый – 265,1 млн лет назад – во время размыва каменноугольных отложений. Свита практически не подвергалась деструктивным для УВ геотемпературам.

Индекс	Отложения	Время накопл			Мощность, м	Кровля	
отложений на рис. 7		Начало, млн	Окончание,	Продолжительность,		свиты, м	
на рис. /		лет назад	млн лет назад	млн лет	20	0	
	Четвертичные отложения Q	1,64	0	1,64	20	0	
	Плиоценовые N_2	4,71	1,64	3,07	1	20	
	Миоценовые N ₁	24	4,71	19,29	15	21	
V.a.	Некрасовская серия Pg ₃ nk Средний-верхний олигоцен	32,3	24	8,3	167	36	
Kz	Чеганская свита Pg ₂₋₃ hq Верхний эоцен-олигоцен	41,7	32,3	9,4	45	203	
	Люлинворская свита Pg_2ll Эоцен	54,8	41,7	13,1	65	248	
	Талицкая свита Pg ₁ tl Палеоцен	61,7	54,8	6,9	110	313	
	Ганькинская свита Pg_1 - K_2gn Маастрихт-даний	73,2	61,7	11,5	30	423	
	Славгородская свита K_2 sl Верхний сантон-кампан	86,5	73,2	13,3	40	453	
	Ипатовская свита K_2 ір Коньяк-нижний сантон	89,8	86,5	3,3	190	493	
	Кузнецовская свита K_2 kz Турон	91,6	89,8	1,8	19	683	
K	Покурская свита K ₁₋₂ pk Апт-альб-сеноман	114,1	91,6	22,5	963	702	
	Алымская $K_1 a_{1-2}$ Апт	120,2	114,1	6,1	0	-	
	Киялинская свита K_1 kls Готерив-баррем	132,4	120,2	12,2	608	1665	
	Тарская свита K_1 tr Валанжин	136,1	132,4	3,7	70	2273	
	Куломзинская свита \mathbf{K}_1 klm Берриас-валанжин	145,8	136,1	9,7	228	2343	
J ₃ bg	Баженовская свита J_3 bg Титон	151,2	145,8	5,4	26	2571	
J_3	Георгиевская свита J_3 qr Кимеридж	156,6	151,2	5,4	0	-	
	Наунакская свита Ј _з пп Келловей-оксфорд	162,9	156,6	6,3	79	2598	
J ₁₋₂ tm	Тюменская свита J ₁₋₂ tm Нижняя-средняя юра	208	162,9	45,1	225	2676	
Т	Туринская серияТ Средний-верхний триас	213	208	5	21	2901	
-	Размыв каменноугольных отложений	313,2	213	100,2	-750	-	
	Елизаровская свита C_2 elz Башкирский век	320,2	313,2	7	120	-	
C ₁₋₂	Средневасюганская свита $C_{1-2}sv$ Верхний серпухов-башкирский век	326,2	320,2	7	200	-	
	K ехорегская свита C_1 kh T урне-средний серпухов	358,9	326,2	32,7	430	-	
D ₃ cg	Чагинская свита D_3 с g Фран-фамен	382,7	358,9	23,8	480*	2922	
D ₂ cz	Чузикская свита D_2 сz Верхний эйфель-живет	390,5	382,7	7,8	470	3402	
-	Перерыв в осадконакоплении Нижний эйфель	393,3	390,5	2,8	0	-	
D ₁ mr	Мирная толща D ₁ mr Эмс	407,6	393,3	14,3	400	3872	
	Лесная свита D_1 ls Лохков-прага	419,2	407,6	11,6	480	4272	
S_2 - D_1	Майзасская свита S_2 mz Пржидол	423	419,2	3,8	410	4752	
	Большеичская свита S_2bl Лудлов	427,4	423	4,4	209	5162	
S ₁ lr	Ларинская свита S ₁ lr Лландовер-венлок	443,4	427,4	16	360	5371	
Г	онструированного разреза	5731					
	і забой скважины	3298					

Табл. 4. Разрез скважины Сельвейкинская 2, выполненный на основании литолого-стратиграфической разбивки вскрытой части и палеоструктурных реконструкций. 1. Серой заливкой в таблице выделены размыв каменноугольных и перерыв осадконакопления среднедевонских отложений. 2. Зеленой заливкой выделены мощности отложений, вскрытые бурением, желтой заливкой – реконструированные мощности отложений. *Показана мощность чагинской свиты, которая частично вскрыта бурением (вскрытая мощность составляет 376 м)

Приуроченность/	Температур	a, °		Рассчитанный тепловой поток, мВт/м ²	
глубина, м	Пластовая	По ОСВ	Модельная	Разница расчётной и	/динамическая характеристика
		(R^{o}_{vt})	(расчётная)	измеренной	
J ₃ nn /2579	-	89	89	0	41
		(0,51)			/квазистационарный, начиная с юры, до
$J_3 vs/2623$	-	89	90	+1	современного
		(0,51)			
$J_1 tm/2808$	-	96	95	-1	
		(0,62)			
D ₃ cg/3106	-	175	175	0	258
		(1,35)			/квазистационарный, начиная с силура,
					до резкого снижения в триасе

Табл. 5. Сопоставление измеренных и расчетных геотемператур в скважине Сельвейкинская 2. 1. Значения ОСВ определены в Лаборатории геохимии нефти и газа Института нефтегазовой геологии и геофизики СО РАН (г. Новосибирск). 2. Для перехода от ОСВ (R^0vt) к соответствующей геотемпературе используется (Isaev, Fomin, 2006) диаграмма «Линии значений отражательной способности витринита, нанесенные на измененную схему Коннона» (Хант, 1982)

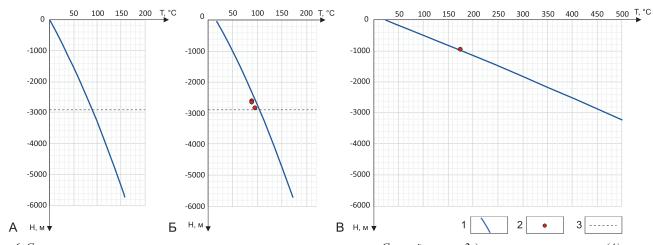


Рис. 6. Сопоставление расчетных и измеренных геотемператур в скважине Сельвейкинская 2 для современного разреза (А), на время максимального прогрева осадочного чехла в конце палеогена – 24 млн лет назад (Б), на время максимального прогрева палеозойского разреза – 313 млн лет назад (В): 1–2 – геотемпературы (1 – расчетные; 2 – измеренные по ОСВ); 3 – положение подошвы осадочного чехла. 24 млн лет назад – время максимальной мощности юрско-палеогеновых отложений и начала резкого спада климатических температур в конце олигоцена. 313 млн лет назад – время максимальной мощности палеозойского разреза

Учитывая последовательность генерации и миграции жидких УВ и газов, следует ожидать аккумуляцию и сохранность чагинского газа в резервуарах коры выветривания и палеозоя. Такой прогноз подтверждается разбуриванием пластов М и М1, где при испытаниях зафиксированы газопроявления.

Тюменская свита (J_{1-2} tm) находилась в <u>низкотемпера-</u> <u>тирной</u> ГФН, на протяжении 81,8 млн лет (86,5–4,7 млн лет назад). Тюменский источник может заполнять нефтью резервуары коры выветривания и внутреннего палеозоя в течение почти 82 млн лет. Геотемпературы резервуаров благоприятны для сохранности тюменской нефти.

Баженовская свита (J₃bg) побывала в короткоживу-<u>щей низкотемпературной</u> ГФН на протяжении 27,6 млн лет (32,3-4,7 млн лет назад). Все это время баженовский источник может заполнять нефтью резервуары коры выветривания и коренного палеозоя.

Выводы

Рис. 8 иллюстрирует, что УВ ларинской, мирнинской и чузикской свит, в силу жесткого геотермического режима деструктивных для УВ температур, не могли формировать залежи нефти и газа в пластах горизонтов М и М,. А ГФГ чагинской свиты завершилась за 50 лет (табл. 6) до формирования коры выветривания и палеозойского резервуара.

Таким образом, сингенетичными (по времени генерации, аккумуляции и сохранности) для резервуаров коры выветривания и палеозоя являются источники тюменской и баженовской нефти, а также относительно близок источник чагинского газа.

Результаты испытаний резервуаров коры и палеозоя показывают, что углеводороды залежей представлены весьма малодебитным сводным газом и разгазированной пластовой водой. Поэтому с наибольшей вероятностью резервуары коры и палеозоя являются аккумуляторами именно палеозойского, частично сохраненного чагинского газа (табл. 3).

Трактовка последнего абзаца может оказаться весьма примечательной в части сопоставления с результатами по Останинскому и Герасимовскому месторождениям.

ИССЛЕДОВАНИЯ НА ОСТАНИНСКОМ **МЕСТОРОЖДЕНИИ**

Геологическая характеристика месторождения и его цифровая модель

В этом разделе представлены результаты сопряженного моделирования катагенетических очагов генерации УВ «современного» юрско-мелового и палеозойского палеобассейнов на Останинском нефтегазоконденсатном месторождении.

Время,			Геот	емпературы сві	иты. °С	1								
млн лет				еновская (J ₃ bg)		енская (J ₁₋₂ tm)	Чаги	нская (D ₃ cg)	Чузи	кская (D2cz)	Мири	ная (D ₁ mr)	Лари	нская (S ₁ lr)
назад	, Ex	ЭК,	PPI	Глубина		Глубина		Глубина		Глубина		Глубина	_	Глубина
	ский д	OTO	Typ	кровли	TyF	кровли	Typ	кровли	TYF	кровли	Typ	кровли	TYF	кровли
	хо, тур	й	eba	свиты, м	eba	свиты, м	eba	свиты, м	eba	свиты, м	eba	свиты, м	eba	свиты, м
	Климатический вековой ход температур, °C	Тепловой поток, мВт/м²	Геотемпературы		Геотемпературы		еотемпературы		Геотемпературы		Геотемпературы		Геотемпературы	
	KOE	31/1	этс		этс		этс		эте		этс		этс	
		Те мЕ	Гес		Гес		Ге							
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	41	80	2571	86	2676	96	2922	108	3402	119	3872	154	5371
1,64	1	41	82	2551	88	2656	98	2902	110	3382	121	3852	156	5351
4,71	3	41	84	2550	90	2655	100	2901	113	3381	123	3851	158	5350
24	16	41	96	2535	101	2640	112	2886	124	3366	134	3836	169	5335
32,3 41,7	16 12	41 41	90 84	2368 2323	95 89	2473 2428	105 99	2719 2674	117 111	3199 3154	128 122	3669 3624	163 156	5168 5123
54,8	19	41	89	2258	95	2363	105	2609	117	3089	128	3559	163	5058
61,7	22	41	88	2148	94	2253	103	2499	116	2979	126	3449	161	4948
73,2	16	41	81	2118	87	2223	97	2469	109	2949	120	3419	155	4918
86,5	22	41	85	2078	91	2183	101	2429	113	2909	123	3379	158	4878
89,8	22	41	79	1888	85	1993	95	2239	107	2719	118	3189	153	4688
91,6	22	41	76	1869	82	1974	92	2220	104	2700	114	3170	149	4669
114,1	21	41	47	907	53	1012	63	1258	75	1738	86	2208	120	3707
116,3	18	41	46	906	52	1011	62	1257	74	1737	84	2207	119	3706
120,2	19	41	45	905	50	1010	61	1256	73	1736	83	2206	118	3705
132,4	19	41	28	298	33	403	43	649	55	1129	66	1599	101	3098
136,1	19	41	26	228	32	333	42	579	54	1059	64	1529	99	3028
145,8	19	41	19	0	25	105	35	351	47	831	58	1301	93	2800
151,2	19	41	-	-	24	79	34	325	47	805	57	1275	92	2774
156,6	19	41	-	-	24	78	34	324	47	804	57	1274	92	2773
162,9 208	19 19	41 151	-	-	22	0	32 43	246 21	44 86	726 501	55 122	1196 971	90 246	2695 2470
213	19	175	-	[_	_	-	43	0	92	480	136	950	285	2470
265,1	10	258	[-	-	- -	115	430	187	910	251	1380	464	2879
303,7	20	258	[_	_	-	156	630	228	1110	292	1580	506	3079
313,2	20	258	_	_	_	_	175	750	246	1230	310	1700	524	3199
318,2	18	258	_	_	_	_	154	630	225	1110	289	1580	503	3079
320	17	258	-	-	-	-	150	609	222	1089	285	1559	499	3058
322	18	258	-	-	-	-	148	585	219	1065	283	1535	496	3034
330	17	258	-	-	-	-	132	490	205	970	267	1440	481	2939
331	17	258	-	-	-	-	130	479	201	959	265	1429	479	2928
335,1	19	258	-	-	-	-	124	430	195	910	258	1380	472	2879
336	18	258	-	-	-	-	120	414	192	894	255	1364	469	2863
337	17	258	-	-	-	-	118	396	189 179	876	252	1346	465	2845
340 341	16 16	258 258	-	-	-	-	107 104	341 323	179	821 803	242 239	1291 1273	456 453	2790 2772
347	18	258	ļ <u>-</u>	-	ļ <u>-</u>	-	90	215	161	695	225	1165	433	2664
358,9	30	258	_	_	_	_	67	0	140	480	202	950	416	2449
362	33	258	_	_	_	_	66	0	132	417	196	887	410	2386
363	34	258	_	_	-	_	65	0	130	397	194	867	408	2366
364	36	258	-	-	-	-	65	0	128	377	192	847	406	2346
365	37	258	-	-	-	-	64	0	126	357	190	827	404	2326
370	37	258	-	-	-	-	57	0	111	256	175	726	389	2225
376	36	258	-	-	-	-	47	0	92	135	156	605	368	2104
377	35	258	-	-	-	-	45	0	88	115	150	585	364	2084
382,7	34	258	-	[-	-	-	-	1-	69	0	132	470	345	1969
383	34	258	-	[-	-	-	-	l-	68 54	0	129	452	342	1951
386 387	33 31	258 258	-	-	-	-	_	1-	54 47	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	101 90	271 211	314 303	1770 1710
390,5	22	258	Ľ	12	[<u> </u>	1	1]_'		51	0	265	1499
391,9	22	258	Ľ			[-		[[_	50	0	264	1500
393,3	22	258	_	-	_	_	_	l ₋	_	l ₋	51	0	264	1499
407,6	27	258	_	_	_	-	-	l ₋	-	 -	-	-	212	1099
411	29	258	-	-	-	-	-	-	-	-	-		194	958
411,6	30	258	-	-	-	-	-	-	-	-	-	-	190	933
412	30	258	-	-	-	-	-	-	-	-	-	-	189	917
419,2	34	258	-	-	-	-	-	-	-	-	-	-	148	619
420,3	34	258	-	-	-	-	-	-	-	-	-	-	131	500
421	34	258	-	-	-	-	-	-	-]-	-	-	119	425
422	33	258	-	-	-	-	-	-	-	-	-	-	104	317
422.8	32	258	-	-	-	-	-	-	-	-	-		90	231
423	33	258	-	-]-	-	-	-	-	l-	-	-	87	209
427,4	29	258	ı -	1	<u> </u>	<u>-</u>	-	1-	1-	L ⁻	1-	l-	55	0

Табл. 6. Расчетные геотемпературы потенциально материнских свит в разрезе скважины Сельвейкинская 2. Светло-синей заливкой показаны температуры ГФН, желтой заливкой – НФГ, ГФГ, темно-желтой заливкой – палеотемпературный максимум. Зеленой заливкой обозначены времена размыва каменноугольных и перерыва осадконакопления среднедевонских отложений. Светло-фиолетовой заливкой выделены температуры, превышающие температуру начала деструкции УВ. Красной заливкой обозначено время геотемпературы в чагинской свите (313,2 млн лет назад), соответствующей определению ОСВ (175°C)

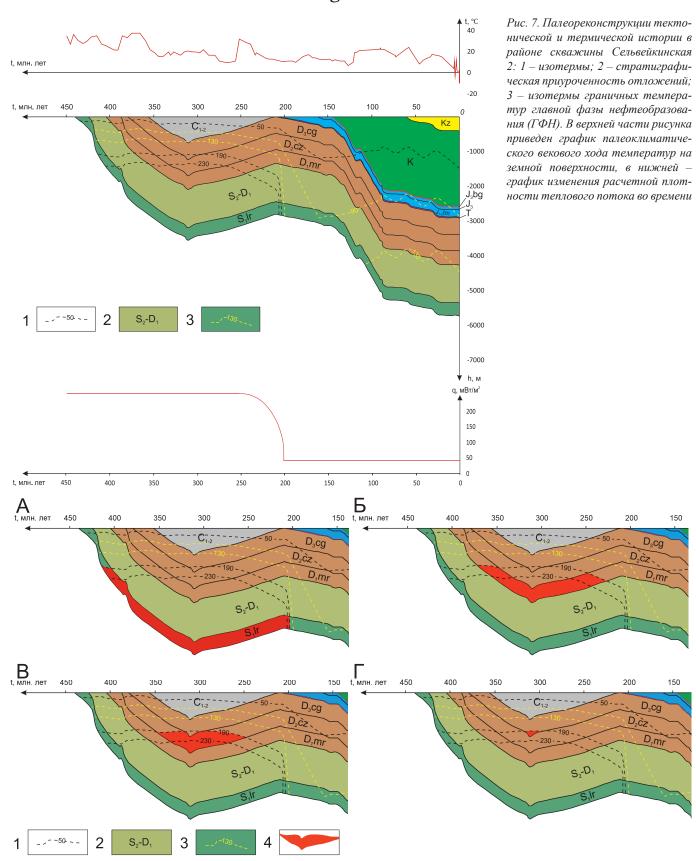


Рис. 8. Иллюстрация зон деструктивных температур для углеводородов палеозойских материнских свит в разрезе скважины Сельвейкинская 2: A – ларинской; B – мирной; B – чузикской; Γ – чагинской: I – B0 температур

Месторождение расположено, как и Герасимовское, в радиальном обрамлении Сельвейкинской площади (рис. 2 и 3). На этом месторождении доюрские пласты М и М1, в отличие от Сельвейкинской площади, содержат промышленные залежи газа и нефти.

Напомним, что Останинское месторождение характеризуется еще и тем, что имеет высокие значения плотности современного теплового потока, *превышающие* современный тепловой поток Сельвейкинской площади на 12–14 мВт/м². В то же время, на Останинском месторождении

для палеозойских образований (D $_{\mbox{\tiny 3}}$) по ОСВ установлена градация катагенеза МК, $(R^0vt=1,05-1,17\%)$, что соответствует палеотемпературам 155-160°C. Это ощутимо меньше (на 15-20°C), чем палеотемпературы по ОСВ палеозойских образований в разрезе Сельвейкинской площади – 175°С (R⁰vt=1,20 %).

Нефтегеологическая характеристика месторождения

Разрез Останинского месторождения представлен образованиями доюрского фундамента и отложениями мезозойско-кайнозойского платформенного чехла. По тектоническому районированию фундамента площадь месторождения входит в состав южной части Нижневартовской антиклинорной зоны инверсионного типа, сложенной геосинклинальной карбонатно-глинисто-сланцевой формацией. По тектоническому районированию платформенного чехла Останинская структура IV порядка приурочена к центральной части тектонической структуры II порядка Пудинскому мезоподнятию (рис. 2).

Нефтегазоносность месторождения приурочена к известнякам палеозойского фундамента (пласт М₁), коры выветривания (пласт М), песчаным коллекторам тюменской (пласты O_3 , O_4) и наунакской (пласты O_1^4 , O_1^3 , O_1^2 , ${\rm HO}_{1}^{-1}$) свит. Нефтеносными являются пласты ${\rm HO}_{1}^{-1}$, M и ${\rm M}_{1}$, газоносными – ${\rm HO_1^3}$, ${\rm HO_1^4}$, ${\rm HO_3}$, ${\rm HO_4}$, M.

Пласты Ю,-Ю, васюганской и наунакской свит месторождения сложены породами прибрежно-морских и континентальных фаций. По данным литолого-петрографических исследований коллекторы продуктивных пластов представлены средне-, мелкозернистыми песчаниками, переходящими местами в крупнозернистые

Продуктивные образования коры выветривания – пласт М. Залежи УВ в коре выветривания на Останинском месторождении приурочены в основном к глинисто-кремнистым отложениям, формирование которых происходило за счет разрушения силикатосодержащих пород. К коре выветривания отнесены также брекчии (из базального слоя), образованные при разрушении и местном перемыве нижележащих глинисто-кремнистых пород.

Продуктивные образования палеозоя – пласт М., По литолого-петрографическому описанию породы фундамента на месторождении представлены известняками.

Глубокое поисковое бурение 12 скважин на Останинском месторождении вскрыло образования доюрского фундамента (рис. 2). Пласт М опробован в 11 скважинах, пласт М, - в 6-ти (табл. 7). В скв. 438Р из доюрского горизонта М (интервал 2750-2755 м) получен приток безводной нефти, дебит – 60 м³/сут. Небольшая залежь нефти пласта М, выделена по результатам испытаний скв. 418П.

Выбор скважины Останинская 438Р для выполнения целевого палеотемпературного моделирования обусловлен наличием измеренных геотемператур как в юрских интервалах разреза, так и в доюрских образованиях, а также притоков в скважину флюида из доюрских горизонтов. Скважина вскрыла кору выветривания мощностью 33 м на глубине 2754 м, образования коренного палеозоя (чагинская свита девона — D_3 cg) — с проходкой 63 м.

Численная модель месторождения

Параметризация осадочного разреза скважины Останинская 438Р принимается в соответствии с литолого-стратиграфической разбивкой (дело скважины, материалы ТО ФБУ «ТФГИ по СФО»), которая дополнена реконструкцией стратиграфического разреза, не вскрытого скважиной (табл. 8). Реконструкция осадконакопления выполнена с начала силурийского и до конца каменноугольного периодов. Мощности стратиграфических подразделений учтены в соответствии с (Решения совещания по рассмотрению и принятию региональной стратиграфической схемы, 1999). Согласно (Решения совещания по рассмотрению и принятию региональной стратиграфической схемы, 1999; Стратиграфия нефтегазоносных..., 2001), в районе исследований получил развитие депрессионный тип разреза. В нем значительную роль играют глинистые и глинисто-кремнистые породы, свидетельствующие об относительно глубоководных (и/ или более спокойных) обстановках осадконакопления. В разрезе присутствуют два перерыва в осадконакоплении. Первый, непродолжительный по времени, соответствует первой половине эйфельского века (Исаев, 2012а). Второй начался в среднекаменноугольную эпоху. Он занял более продолжительное время (100,2 млн лет) и сопровождался размывом каменноугольных отложений - елизаровской C_2 elz, средневасю (anchor C_{1-2} sv и кехорегской C_1 kh свит. О перерыве в осадконакоплении и размыве отложений свидетельствуют вскрытые на забое скважины 438Р отложения среднего-позднего девона, а, точнее, чагинской свиты, формирующейся в фаменский век позднего девона (Kontorovich, 2007), возраст которых подтверждается по комплексу остракод (материалы ТФ ФБУ «ТФГИ по СФО»). Девонские отложения перекрыты корой выветривания.

В качестве предполагаемых источников УВ для резервуаров коры выветривания и кровли коренного палеозоя рассматриваем потенциально материнские свиты: ларинскую S₁lr, мирную D₁mr, чузикскую D₂cz, чагинскую D_3 сg, тюменскую $J_{1,2}$ tm и баженовскую J_3 bg. Если чагинские отложения непосредственно вскрыты скважиной Останинская 438Р, то породы доманикоидного типа ларинской, мирной и чузикской свит выявлены на смежных участках территории исследований.

При решении обратных задач геотермии как на первом, так и на втором этапе «невязка» расчетных и измеренных (наблюденных) геотемператур не превысила ± 2 °C (табл. 9, рис. 9), т.е. соответствует оптимальной.

Анализ и оценка результатов

Напомним, что ключевыми факторами, определяющими реализацию генерационных возможностей формации, являются продолжительность и температурный режим главной фазы нефтеобразования и главной фазы газообразования. Геотемпературы более 190°C – разрушительные для УВ температуры.

Известно, что в формировании нефтегазоносности доюрского фундамента участвуют два резервуара: коры выветривания (М) и коренного палеозоя (М,). Первый сформировался в период 213-208 млн лет назад и существует до нашего времени (в скважине 438Р вскрытая мощность составила 33 м). Палеотемпературы горизонта

Chymn	Иуулапрая	Turn di montro	Дебит, м ³ /сут–
Свита (горизонт,	интервал, м	Тип флюида	деоит, м /сут– жидкий флюид;
пласт)			тыс. м ³ /сут– газ
	кважина Ос	танинская 417П	
Пласт Ю1	2470-2474	Пластовая вода с	0,3
1		пленкой нефти	-,-
Кора выветривания (пласт М)	2731-2774	Пластовая вода	228,8
Кора выветривания (пласт М)+	2759-2892	Практически «сухо»	-
Палеозой (пласт М ₁)		•	
Палеозой (пласт M_1)	2775-2787	$\Gamma a3;$ пластовая вода	0,5; 155,5
Палеозой (пласт M_1)	2949-3027	Практически «сухо»	-
Палеозой (пласт M_1)	3020-3111	Пластовая вода	408,2
Палеозой (пласт M_1)	3021-3030	Газ;	0,1;
		пластовая вода	48,4
		танинская 418П	
Пласт Ю1	2482-2489	•	0,6
Кора выветривания (пласт М)	2765-2785	«Cyxo»	-
Палеозой (пласт М ₁)	2790-2876	«Cyxo»	_
Палеозой (пласт M_1)	2834-2838	«Cyxo»	_
Палеозой (пласт M_1)	2821-2838	Нефть;	0,02;
Time cooli (inime i ivi)	2021 2000	пластовая вода	0,23
Палеозой (пласт M_1)	2802-2813	Нефть	0,6
	кважина Ос	танинская 419П	
Пласт Ю1	2426-2468	«Cyxo»	-
Палеозой (пласт М ₁)	2703-2766	«Cyxo»	-
Палеозой (пласт М1)	2753-2857	Пластовая вода	26,8
Палеозой (пласт M_1)	2998-3102	Пластовая вода	28,0
C	кважина Ос	танинская 424Р	
Пласт Θ_1^{-1}	2512-2519	Пластовая вода	11,0
Пласт ${\rm HO_1}^2$	2537-2546	Пластовая вода	6,5
Пласт Ю3	2640-2651	«cyxo»	-
Пласт Ю ₄	2672-2687	Газ;	0,005;
		пластовая вода	0,3
Кора выветривания (пласт М)	2881-2883	Пластовая вода	0,1
Палеозой (пласт М ₁)	2881-2925	Газ;	0,02;
		пластовая вода	0,1
C	кважина Ос	танинская 429Р	
Пласт $W_1^1 + \Pi$ ласт W_1^2	2477-2502	Газ; конденсат	363,6; 101,0
Π ласт Θ_1^2	2496-2502	Газ; конденсат	136,7
Пласт Ю ₄	2620-2629	Пластовая вода	5,5
Пласт Ю ₄ Кора выветривания	2868-2894	Пластовая вода	2,6
(пласт М) Кора выветривания	2768-2776	Пластовая вода	1,7
(пласт М)			
Палеозой (пласт М ₁)	2914-2946	Пластовая вода	1,2
		станинская 438Р	
ТарскаяK₁tr	2130-2143	Пластовая вода	6,0
Баженовская J ₃ bg	2448-2456	Газ;	0,02;
+ НаунакскаяJ₃nn	2500 2516	конденсат	0,004
НаунакскаяJ₃nn	2508-2516	Газ;	40,0; 30,7;
		конденсат; пластовая вода;	18,1
Тюменская J ₁₋₂ tm	2567-2571	Пластовая вода,	0,7
Кора выветривания	2750-2755	Безводная нефть;	60,0;
(пласт М)	2,30 2,33	газ	1,5
Палеозой (пласт M_1)	2773-2781	Пластовая вода	207,3

Табл. 7. Результаты опробования скважин Останинского месторождения, вскрывших образования коренного палеозоя. Таблица составлена по материалам ТО ФБУ «ТФГИ по СФО»

М не превышали 120°C. Резервуар верхней части коренного палеозоя (мощностью до 400-500 м, вскрытая мощность – 63 м) генетически обусловлен процессами в коре выветривания. Он (вторичные коллекторы) сформировался не раньше 213-208 млн лет назад и существует до нашего времени, его геотемпература не превышала 130°C.

Анализ периодов «работы» очагов генерации нефти (ГФН), газа и газоконденсата (ГФГ) в каждой из перечисленных выше потенциально материнских свит (табл. 10, рис. 10) позволяет сделать вывод о возможности аккумуляции и сохранности залежей УВ в резервуарах коры выветривания и коренного палеозоя.

Ларинская свита (S,lr) находилась в ГФН сравнительно недолго – 3 млн лет (422–419,2 млн лет назад), в $\Gamma \Phi \Gamma - 13$ млн лет (419,2–406 млн лет назад). С большой вероятностью нефтяной потенциал ларинского источника исчерпан 419,2 млн лет назад, газовый – 406 млн лет назад. Свита вошла 406 млн лет назад в зону деструктивных для УВ геотемператур, превышающих 190°C, и находилась в этой зоне дважды: 406-162,9 млн лет назад и с 89,8 млн лет назад по настоящее время. Совершенно очевидно, что ларинские УВ не могли аккумулироваться в резервуарах коры выветривания и внутреннего палеозоя.

Мирная свита (D,mr) побывала в ГФН 8 млн лет (386–378 млн лет назад), в $\Gamma \Phi \Gamma$ – 28 млн лет (378–350 млн лет назад). Нефтяной потенциал мирнинского источника с большой вероятностью исчерпан 378 млн лет назад, газовый – 350 млн лет назад. 350 млн лет назад свита вошла в зону деструкции УВ, и находилась в этой зоне до 213 млн лет назад (37 млн лет). Очевидно, что мирнинские УВ не могли аккумулироваться в резервуарах коры выветривания и внутреннего палеозоя.

Чузикская свита (D₂cz) находилась в ГФН 20 млн лет (371–351 млн лет назад), в $\Gamma \Phi \Gamma - 27$ млн лет (351–324 млн лет назад). *324 млн лет назад* свита вошла в зону деструкции УВ, и находилась в этой зоне до 265 млн лет назад, 59 млн лет. Очевидно, что чузикские УВ не могли заполнять и сохраняться в резервуарах коры выветривания и внутреннего палеозоя, которые сформировались не раньше 213-208 млн лет назад.

Чагинская свита (D,cg) присутствовала в ГФН на протяжении 17 млн лет (339-322 млн лет назад), в $\Gamma\Phi\Gamma$ – 57 млн лет (322–265,1 млн лет назад). Нефтяной потенциал чагинского источника с большой вероятностью исчерпан 322 млн лет назад, газовый – 265 млн лет назад. Свита не подвергалась деструктивным для УВ геотемпературам. И, кроме того, «пережила» (табл. 10) не столь продолжительную (15 млн лет) и не столь «горячую» (до 155°С) $\Gamma \Phi \Gamma$. Учитывая последовательность генерации и миграции жидких УВ и газов, следует ожидать аккумуляцию и частичную сохранность как чагинского газа, так и чагинской нефти в резервуарах коры выветривания и палеозоя.

Индекс	Отложения		копления		Мощность,	Кровля
отложений на рис. 10		Начало, млн лет	Окончание, млн лет	Продолжи- тельность,	M	свиты, м
		назад	назад	млн лет		
	Четвертичные отложения Q	1,64	0	1,64	20	0
	Плиоценовые N_2 Миоценовые N_1	4,71 24	1,64 4,71	3,07 19,29	0 25	20
	Некрасовская серия Pg ₃ nk					
	Средний-верхний олигоцен	32,3	24	8,3	124	46
Kz	Чеганская свита Рg ₂₋₃ hq	41,7	32,3	9,4	30	170
	Верхний эоцен-олигоцен Люлинворская свита Pg ₂ ll					
	Эоцен	54,8	41,7	13,1	70	200
	Талицкая свита Pg_1tl	61,7	54,8	6,9	20	270
	Палеоцен					270
	Ганькинская свита Pg_1 - K_2 gn Маастрихт-даний	73,2	61,7	11,5	72	290
	Славгородская свита K ₂ sl	96.5	72.2	12.2	60	262
	Верхний сантон-кампан	86,5	73,2	13,3	60	362
	Ипатовская свита K ₂ ip	89,8	86,5	3,3	191	422
	Коньяк-нижний сантон Кузнецовская свита K_2 kz					
	Турон	91,6	89,8	1,8	14	613
K	Покурская свита K ₁₋₂ pk	114,1	91,6	22,5	863	627
i k	Апт-альб-сеноман	11 1,1	71,0	22,3	003	027
	Алымская свита $K_1 a_{1-2}$ Апт	120,2	114,1	6,1	0	-
	Киялинская свита K ₁ kls	122.4	120.2	10.0	625	1.400
	Готерив-баррем	132,4	120,2	12,2	637	1490
	Тарская свита K ₁ tr	136,1	132,4	3,7	104	2129
	Валанжин Куломзинская свита K ₁ klm			•		
	Берриас-валанжин	145,8	136,1	9,7	194	2233
J ₃ bg	Баженовская свита J ₃ bg	151,2	145,8	5,4	22	2427
305	Титон	131,2	1 13,0	J, 1	LL	2127
	Георгиевская свита J_3 qr Киммеридж	156,6	151,2	5,4	0	-
J_3	Наунакская свита J ₃ nn	1(2.0	1566	6.2	76	2440
	Келловей-оксфорд	162,9	156,6	6,3	76	2449
J ₁₋₂ tm	Тюменская свита J ₁₋₂ tm	208	162,9	45,1	228	2526
	Нижняя-средняя юра Тампейская серия Т					
T	Средний-верхний триас	213	208	5	33	2754
-	Размыв каменноугольных отложений	313,2	213	100,2	-750	-
	Елизаровская свита C ₂ elz	320,2	313,2	7	120	-
	Башкирский век Средневасюганская свита C ₁₋₂ sv					
C_{1-2}	Верхний серпухов-башкирский век	326,2	320,2	6	200	-
	Кехорегская свита C ₁ kh	358,9	326,2	32,7	430	_
	Турне-средний серпухов	330,5	320,2	32,7	150	
D ₃ cg	Чагинская свита D ₃ cg	382,7	358,9	23,8	480*	2787
3.6	Фран-фамен	,-				
D_2cz	Чузикская свита D ₂ cz	390,5	382,7	7,8	470	3267
D ₂ cz	Верхний эйфель-живет	370,3	302,7	,,o 	170	3207
-	Перерыв (скрытое несогласие)	393,3	390,5	2,8	0	-
	Нижний эйфель Мирная толща D ₁ mr		·			
D_1mr	Эмс	407,6	393,3	14,3	400	3737
	Лесная свита D ₁ ls	419,2	407,6	11,6	480	4137
	Лохков-прага	717,4	TU / ,U	11,0	TOU	713/
S_2 - D_1	Майзасская свита S_2 mz Пржидол	423	419,2	3,8	410	4617
	пржидол Большеичская свита S₂bl	40 <i>5</i> :	400		•	500 -
	Лудлов	427,4	423	4,4	209	5027
S ₁ lr	Ларинская свита S ₁ lr	443,4	427,4	16	360	5236
	Лландовер-венлок		141,7	10	300	3230
	онструированного разреза, м	5596				
рактически й	й забой скважины, м	2850				

Табл. 8. Разрез скважины Останинская 438, выполненный на основании литолого-стратиграфической разбивки и палеоструктурной реконструкции. Серой заливкой в таблице выделены размыв каменноугольных и перерыв осадконакопления среднедевонских отложений; Зеленой заливкой выделены мощности отложений, вскрытых бурением, желтой заливкой – реконструированные мощности отложений; *показана мощность чагинской свиты, которая частично вскрыта бурением (вскрытая мощность составляет 63 м)

Приуроченность/	Температур	pa, °			Рассчитанный тепловой поток,
глубина, м	Пластовая	Π o OCB (R^0_{vt})		Разница расчётной и измеренной	мВт/м² /динамическая характеристика
K ₁ kl/2119	77	-	79	+2	54
J ₃ nn/2512	94	-	92	-2	/квазистационарный, начиная с юры,
$J_{1-2}tm/2570$	94	-	94	0	до современного
$J_{1-2}tm / 2704$	-	115 (0,76)	115	0	
D ₃ cg/2844	-	155 (1,05)	155	0	223 /квазистационарный, начиная с силура, до резкого снижения в триасе

Табл. 9. Сопоставление расчетных и измеренных геотемператур в скважине Останинская 438Р, рассчитанный тепловой поток. 1. Значения ОСВ определены в Лаборатории геохимии нефти и газа Института нефтегазовой геологии и геофизики СО РАН (г. Новосибирск). 2. Для перехода от ОСВ (R^0 vt) к соответствующей геотемпературе используется (Isaev, Fomin, 2006) диаграмма «Линии значений отражательной способности витринита, нанесенные на измененную схему Коннона» (Хант, 1982)

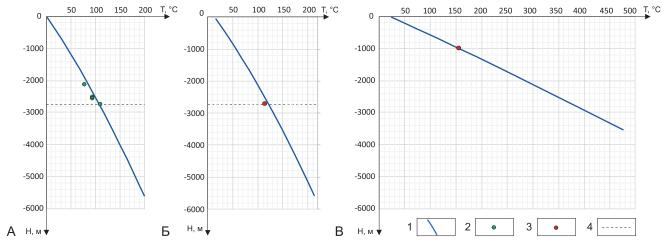


Рис. 9. Сопоставление расчетных и измеренных геотемператур в скважине Останинская 438Р для современного разреза (А), на время максимального прогрева осадочного чехла в конце палеогена – 24 млн лет назад (Б), на время максимального прогрева палеозойского разреза – 313 млн лет назад (В): 1-3 - геотемпературы (1 - расчетные; 2 - измеренные пластовые; 3 - измеренные по ОСВ); 4 – положение подошвы осадочного чехла. 24 млн лет назад – время максимальной мощности юрско-палеогеновых отложений и начала резкого спада климатических температур в конце олигоцена. 313 млн лет назад – время максимальной мощности палеозойского разреза

Такой прогноз в некоторой степени подтверждается разбуриванием пластов М и М1 (табл. 7, скважины 417П, 424Р и, особенно, 438Р), где при испытаниях зафиксированы притоки и газа, и нефти.

Тюменская свита (J_{1.2}tm) находится в высокотемпературной и продолжительной ГФН на протяжении последних 92 млн лет (91,6-0 млн лет назад). Тюменский источник может заполнять нефтью резервуары коры выветривания и коренного палеозоя в течение последних 92 млн лет. Геотемпературы резервуаров благоприятны для сохранности тюменской нефти.

Баженовская свита (J,bg) также до сих пор присутствует в высокотемпературной и продолжительной ГФН, на протяжении последних 90 млн лет (89,8-0 млн лет назад). Все это время баженовский источник может заполнять нефтью резервуары коры выветривания и внутреннего палеозоя.

Выводы

Рисунок 11 иллюстрирует, что УВ ларинской, мирнинской и чузикской свит не могли формировать залежи нефти и газа в пластах горизонтов М и М,

Таким образом, сингенетичными (по времени генерации, аккумуляции и сохранности) для резервуаров

коры выветривания и палеозоя Останинского месторождения являются тюменский и баженовский источники нефти, а также чагинский источник газа и нефти. Однако генетические анализы нефтей из резервуаров коры и палеозоя показывают, что эти нефти генерированы сапропелевым органическим веществом. Поэтому нефти резервуаров коры выветривания и палеозоя не могут быть тюменскими. Вместе с тем баженовские нефти и нефти доманикоидных пород чагинской свиты генетически неразличимы.

Роль чагинского источника газа для пластов М и М, вероятно, крайне незначительная. Если оценивать эту роль (долю) на примере залежи, вскрытой скв. 438Р, то она составляет 1.5/(60.0+1.5) = 0.02, т.е. порядка 2 %.

ИССЛЕДОВАНИЯ НА ГЕРАСИМОВСКОМ **МЕСТОРОЖДЕНИИ**

В данном разделе представлены результаты моделирования фанерозойских очагов генерации углеводородов месторождения Герасимовское, расположенного, как и Останинское, в радиальном обрамлении Сельвейкинской площади (рис. 2 и 3). На месторождении доюрские пласты М и М, содержат промышленные залежи газа и нефти.

Время,			Геотем	пературы свит	гы °С									
млн.				овская (J ₃ bg)		ская (J ₁₋₂ tm)	Чагинс	кая (D ₃ cg)	Чузик	ская (D2cz)	Мирна	ая (D ₁ mr)	Ларин	ская (S ₁ lr)
лет назад	кий	OK,	ıяd	ип	ры	И	ры	и	ры	ИЕ	pbi.	ИЕ	pbi.	и
назад	Климатический вековой ход температур, °C	Тепловой поток, мВт/м²	Геотемпературы	Глубина кровли свиты, м	Геотемпературы	Глубина кровли свиты, м	Геотемпературы	Глубина кровли свиты, м						
	Климатичес; вековой ход температур,	30Й	шер	на к	ше	Ha K	ше	на к	шер	на к	шер	на к	шер	на к
	има ово ппер	Теплов мВт/м ²	тем	Глубина свиты, м	тем	Глубина свиты, м	тем	Глубина свиты, м	Ten	Глубина свиты, м	Ten	Глубина свиты, м	Ten	Глубина свиты, м
	Кли век тем	Ter	Гес	Глу	Гес	Глу	Гес	Глу	Гес	Глу	Гес	Глу	Гес	Глу
0	0	54	97	2427	104	2526	118	2787	134	3267	148	3737	194	5236
1,64	1	54	99	2407	106	2506	120	2767	136	3247	150	3717	196	5216
4,71	3	54	101	2406	108	2505	122	2766	138	3246	152	3716	198	5215
24	16	54 54	112	2381	119	2480 2356	133	2741	149	3221 3097	162	3691 3567	208	5190
32,3 41,7	16 12	54	106 100	2257 2227	113 107	2326	127 121	2617 2587	143 137	3067	157 151	3537	203 196	5066 5036
54,8	19	54	105	2157	113	2256	126	2517	142	2997	156	3467	202	4966
61,7	22	54	107	2137	114	2236	128	2497	143	2977	157	3447	203	4946
73,2	16	54	98	2065	105	2164	118	2425	135	2905	149	3375	194	4874
86,5	22	54	100	2005	107	2104	121	2365	137	2845	150	3315	196	4814
89,8	22 22	54 54	93 89	1814 1800	100 96	1913 1899	114 110	2174 2160	130 126	2654	144 140	3124	190 186	4623 4609
91,6 114,1	21	54	56	937	63	1036	77	1297	93	2640 1777	107	3110 2247	153	3746
116,3	18	54	55	936	62	1035	76	1296	91	1776	107	2246	151	3745
120,2	19	54	53	935	61	1034	74	1295	90	1775	104	2245	150	3744
132,4	14	54	30	298	37	397	51	658	67	1138	81	1608	127	3107
136,1	10	54	26	194	34	293	47	554	63	1034	77	1504	123	3003
145,8	12	54	19	0	27	99	40	360	56	840	70	1310	116	2809
151,2 156,6	14 14	54 54	-	-	26 26	77 76	40 40	338 337	55 55	818 817	69 69	1288 1287	115 115	2787 2786
162,9	15	54	-	_	23	0	37	261	53	741	66	1211	112	2710
208	14	139	-	_	-	-	42	33	81	513	115	983	229	2482
213	14	158	-	-	-	-	38	0	84	480	123	950	257	2449
265,1	10	223	-	-	-	-	101	430	163	910	218	1380	403	2879
303,7	20	223	-	-	-	-	138	630	200	1110	255	1580	441	3079
313,2	20	223 223	-	-	-	-	155	750	216 197	1230	271252	1700 1580	456	3199 3079
318,2 322	18 18	223	-	[-	_	-	136 131	630 585	197	1110 1065	232	1535	437	3079
323	19	223	-	_	_	-	128	573	191	1053	245	1523	430	3022
324	19	223	-	-	-	-	127	561	190	1041	244	1511	429	3010
326	19	223	-	-	-	-	126	538	187	1018	242	1488	427	2987
335,1	19	223	-	-	-	-	110	430	171	910	226	1380	411	2879
339 343	16 16	223 223	-	-	-	-	97 88	360 287	159 149	840 767	214 205	1310 1237	399 390	2809 2736
343	19	223	-	_	_	-	80	215	149	695	197	1165	381	2664
350	19	223	_	_	_	-	74	161	137	641	191	1111	376	2610
351	20	223	-	-	-	-	72	143	135	623	189	1093	374	2592
353	22	223	-	-	-	-	69	107	130	587	186	1057	371	2556
358,9	30	223	-	-	-	-	62	0	125	480	179	950	364	2449
371 377	37 35	223 223	-	-	-	-	53 43	0	98 81	236 115	154 135	706 585	337 320	2205 2084
378	35	223	-	_	_	_	41	0	77	95	131	565	316	2064
379	34	223	-	-	-	-	39	0	74	74	128	545	313	2044
380	33	223	-	-	-	-	37	0	70	54	124	524	309	2023
382,7	34	223	-	-	-	-	-	-	65	0	118	470	303	1969
385	35	223	-	-	-	-	-	-	57	0	102	331	286	1830
386 387	35 28	223 223	-	<u></u>	-	_	_	_	51 45	0	92 82	271 211	276 266	1770 1710
390,5	22	223	_	_	_	_	_	-	-	-	47	0	232	1499
391,9	22	223	-	_	_	-	_	-	_	-	47	0	232	1500
393,3	22	223	-	-	-	-	-	-	-	-	47	0	232	1499
400	24	223	-	-	-	-	-	-	-	-	38	0	210	1312
405	26	223	-	-	-	-	-	-	-	-	31	0	195	1172
406 407	26 27	223 223	-	-	-	-	-	-	-	-	29 28	0	191 189	1144
407,6	27	223	_	[[_	[-	_	[[-	20	-	189	1116 1099
407,6	35	223	-	-	_	_	_	-	[_	-	-	_	164	876
419,2	34	223	-	-	-	-	-	-	-	-	-	-	132	619
420	34	223	-	-	-	-	-	-	-	-	-	-	121	533
421	34	223	-	-	-	-	-	-	-	-	-	-	108	425
422	33	223	-	-	-	-	-	-	-	-	-	-	94	317
423 427,4	33 29	223 223	-	[-	[-	-	-	_	[[-	[80 51	209
14/,T				1	1	l	Ī	<u> </u>		l	1	Ĭ	J 1	, , , , , , , , , , , , , , , , , , ,

Табл. 10. Расчетные геотемпературы потенциально материнских свит в разрезе скважины Останинская 438Р. Светло-синей заливкой показаны температуры $\Gamma\Phi H$, желтой заливкой – $H\Phi\Gamma$, $\Gamma\Phi\Gamma$, темно-желтой заливкой – палеотемпературный максимум. Зеленой заливкой обозначены времена размыва каменноугольных и перерыва осадконакопления среднедевонских отложений. Светло-фиолетовой заливкой выделены температуры, превышающие температуру начала деструкции УВ. Красной заливкой обозначено время геотемпературы в чагинской свите (313,2 млн лет назад), соответствующей определению ОСВ (155°C)

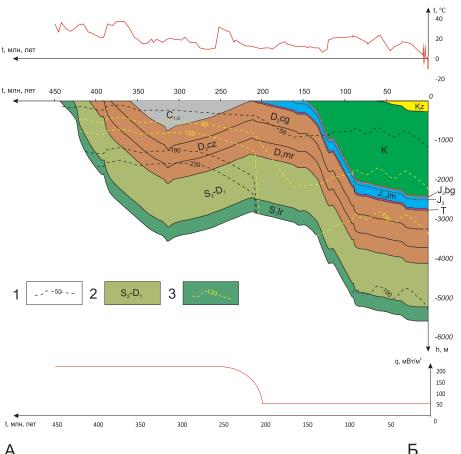


Рис. 10. Палеореконструкции тектонической и термической истории в районе скважины Останинская 438Р: 1 - изотермы; 2 - стратиграфическая приуроченность отложений; 3 – изотермы граничных температур ГФН. В верхней части рисунка приведен график палеоклиматического векового хода температур на земной поверхности, в нижней – график изменения расчетной плотности теплового потока во времени

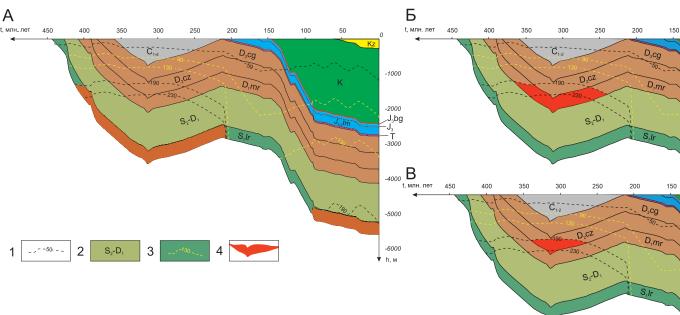


Рис. 11. Иллюстрация зон деструктивных температур для углеводородов палеозойских материнских свит в разрезе скважины Останинская 438Р: А – ларинской; Б – мирной; В – чузикской: 1–3 те же, что и для рис. 10; 4 – зоны деструктивных температур

Месторождение характеризуется высокими значениями плотности современного теплового потока - 54 мВт/м², превышающими современный тепловой поток Сельвейкинской площади на 13 мВт/м², а по ОСВ палеозойских образований палеотемпературы сопоставимы 175 и 170 °С. Особый интерес к Герасимовскому месторождению обусловлен следующим: в отличие от Сельвейкинской площади и Останинского месторождения, на которых вскрытая кровля палеозоя представлена девонскими отложениями (D₃), на Герасимовском кровля палеозоя сложена образованиями карбона (C_1) .

Нефтегеологическая характеристика месторождения

По фундаменту – площадь Герасимовского месторождения расположена на границе внутригеосинклинального Межовского срединного массива и Васюган-Пудинского антиклинория. По осадочному чехлу - Герасимовская структура находится в зоне сочленения Чузикско-Чижапской мезоседловины и Пудинского мезоподнятия, осложняя его юго-западный склон.

Промышленная нефтегазоносность месторождения связана с резервуарами доюрского (пласты М, М,), нижнеюрского (пласт $\mathrm{IO_{15}}$), среднеюрского (пласты $\mathrm{IO_{14}}$, $\mathrm{IO_{12}}$, $\mathrm{IO_{11}}$, $\mathrm{IO_{10}}$, $\mathrm{IO_{2}}$) и верхнеюрского (пласты $\mathrm{IO_{1}^{1-2}}$, $\mathrm{IO_{1}^{3}}$, $\mathrm{IO_{1}^{4}}$) НГК. Фазовое состояние залежей следующее: пласты $\mathrm{M_{1}}$, $\mathrm{IO_{15}}$, $\mathrm{IO_{14}}$, $\mathrm{IO_{12}}$, $\mathrm{IO_{11}}$ – нефтегазовые, М и $\mathrm{IO_{10}}$ – нефтегазоконденсатные.

Пласты группы Ю (наунакская, тюменская свиты) – средне-, мелкозернистые песчаники, реже – крупнозернистые алевролиты.

Резервуар выветрелого палеозоя — пласт М, представлен кавернозно-трещиноватыми кремнистыми, реже глинисто-кремнистыми породами с органогенным детритом. Отмечается значительное изменение качества коллекторов в резервуаре по латерали, вплоть до полного их уплотнения.

Резервуар коренного палеозоя — пласт M_1 , выполнен в основном известняками органогенными кремнистыми с прослоями мергелей и аргиллитов. В скважине Герасимовская 12 вскрыты нижнекарбоновые черные известковистые силициты.

Глубокое поисковое бурение на 17 скважинах Герасимовского месторождения вскрыло образования доюрского фундамента. Пласт М является основным промышленным нефтяным объектом (табл. 11). В скважине Герасимовская 8 из доюрского горизонта М (интервал 2854-2861 м) зафиксирован приток безводной нефти, дебит – 127 м³/сут. Приток нефти дебитом 8 м³/сут получен из пласта М $_1$ (интервал 2867-2879 м) в скважине 12. Приток газа дебитом 5,5 тыс. м³/сут получен из интервала 2746-2758 м (M_1+M) в скважине 7. Непромышленные притоки нефти получены из пласта Ю $_7$ в скважине 12 и газоконденсатной смеси в скважине 7.

Выбор скважины Герасимовская 12 для выполнения целевых палеоструктурных и палеотемпературных

реконструкций предопределен обеспеченностью измеренными геотемпературами как в юрских интервалах разреза, так и в доюрских образованиях, а также наличием притоков из доюрских пластов. Скважина вскрыла выветрелую часть фундамента мощностью 57 м на глубине $2842\,$ м, образования коренного палеозоя (кехорегская свита карбона — C_1 kh) — с проходкой $111\,$ м.

Численная модель месторождения

Литолого-стратиграфическая разбивка («дело скважины») послужила основой параметризации вскрытого мезозойско-кайнозойского разреза скважины 12 (табл. 12). Реконструкция мощностей не вскрытого силурийско-каменноугольного стратиграфического разреза выполнена с учетом (Решения совещания по рассмотрению и принятию региональной стратиграфической схемы, 1999).

В палеозойском разрезе учтены перерывы в осадконакоплении (Исаев, 2012а). Первый (первая половина эйфельского века) — непродолжительный, порядка 3 млн лет. Второй (с началом в среднекаменноугольную эпоху) — более продолжительный, порядка 105 млн лет. Во второй перерыв размывались каменноугольные отложения — елизаровская \mathbf{C}_2 elz, средневасюганская \mathbf{C}_{1-2} sv и частично кехорегская \mathbf{C}_1 kh свиты. О перерыве в осадконакоплении и размыве отложений свидетельствуют вскрытые на забое скважины 12 визейские отложения раннего карбона, возраст которых подтверждается по комплексу фораминифер. Таким образом, толщина размытых палеозойских отложений составляет не менее 1000 м.

Как источники УВ для горизонтов выветрелого и коренного палеозоя предполагаются потенциально нефтематеринские свиты (Запивалов, Исаев, 2010; Фомин, 2011): палеозойские породы доманикоидного типа — ларинской

Свита (горизонт, пласт)	Интервал, м	Тип флюида	Дебит, м ³ /сут							
	Скважина Ге	расимовская 7								
Выветрелый палеозой (пласт M) + Кехорегская свита (C_1 kh (пласт M_1))	2746-2758	нефть, газ	20; 5,5 тыс. м ³ /сут							
Выветрелый палеозой (пластМ)	2746-2754	нефть, газ	8,2; 2,1 тыс. м ³ /сут							
Тюменская свита (J_{1-2} tm (пласт Θ_7))	2704-2712	газоконденсатная смесь (конденсат+газ)	16 тыс. м ³ /сут							
Тюменская свита (J_{1-2} tm (пласт IO_2))	2562-2568	конденсат, газ	1,2; 10,8 тыс. м ³ /сут							
	Скважина Герасимовская 12									
Кехорегская свита (C_1 kh (пласт M_1))	2902-2917	пластовая вода с малым количеством растворенного газа	1,1							
Кехорегская свита (C_1 kh (пласт M_1))	2867-2879	нефть, вода, газ	8; 3,5; 0,5 тыс. м ³ /сут							
Выветрелый палеозой (пластМ)	2847-2860	нефть	3,5							
Тюменская свита $(J_{1-2}tm) + B$ ыветрелый палеозой (пласт M)	2838-2859	нефть 90%, вода 10%	13							
Тюменская свита (J_{1-2} tm (пласт IO_7))	2770-2780	нефть	0,4							
Наунакская свита (J ₃ nn)	2565-2570	практически «сухой»	-							
	Скважина Ге	расимовская 8								
Выветрелый палеозой (пластМ)	2854-2861	нефть	127							
Выветрелый палеозой (пластМ)	2865-2870, 2854- 2861	нефть	80							
Тюменская свита $(J_{1-2}tm) + B$ ыветрелый палеозой (пласт M)	2828-2847	нефть	47							

Табл. 11. Результаты опробования глубоких скважин Герасимовского нефтегазоконденсатного месторождения, пройденных в образованиях коренного палеозоя. Таблица составлена по материалам ТО ФБУ «ТФГИ по СФО»

 $(S_1 lr)$, мирной $(D_1 mr)$, чузикской $(D_2 cz)$, чагинской $(D_3 cg)$, кехорегской (C,kh) свит, а также юрские битуминозные породы тюменской (J_1 , tm) и баженовской (J_3 bg) свит.

При решении обратных задач геотермии как на первом, так и на втором шаге «невязка» расчетных и измеренных (наблюденных) геотемператур не превысила ±2°С (табл. 13, рис. 12), т.е. соответствует оптимальной.

Решением прямых задач геотермии с использованием расчетных значений и динамики глубинного теплового потока выполнено восстановление седиментационной и термической истории для фанерозойских потенциально материнских свит - ларинской, мирной, чузикской, чагинской, кехорегской, а также тюменской и баженовской (табл. 14, рис. 13).

Анализ и оценка результатов

Доюрский НГК представлен двумя резервуарами: выветрелого (горизонт М) и коренного (М1) палеозоя. Триасовая кора выветривания, вероятно играющая ключевую роль в генезисе резервуаров, формировалась в период 213–208 млн лет назад, однако была подвергнута денудационным процессам и не сохранилась. То есть резервуары палеозоя генетически обусловлены преимущественно эпигенетическими метеорными и гидротермальными процессами в коре выветривания. Они, представленные вторичными коллекторами, сформировались не ранее 213–208 млн лет назад, их геотемпературы не превышали 130°С. В то же время, принимается концепция вертикальной межпластовой миграции УВ, включая миграцию как вверх, так и вниз по разрезу.

Последовательно анализируя периоды «работы» катагенетических очагов генерации нефти (ГФН), газа и газоконденсата (ГФГ) в каждой из семи фанерозойских потенциально материнских свит (табл. 14, рис. 13) и сопоставляя эти периоды со временем формирования палеозойских резервуаров, сделаем оценку возможности аккумуляции и сохранности УВ в виде залежей палеозойских пластов.

Нужно отметить, что максимальный прогрев палеозойского разреза наблюдается к началу размыва каменноугольных отложений (313 млн лет назад). В это время разрез характеризуется максимальной мощностью в доюрское время. Геотемпературы в наиболее погруженной ларинской свите достигают 540°, а, соответственно, выше по разрезу: в мирной -360° , в чузикской -300° , в чагинской — 240°, в кехорегской — 180°.

Ларинская свита (S, lr) вошла в ГЗН 422 млн лет назад, но ненадолго – на 3 млн лет, в ГЗГ – 419 млн лет назад (на 12 млн лет). Таким образом, нефтяной потенциал ларинского источника реализован 419 млн лет назад, газовый 407 млн лет назад. С этого времени свита вошла в зону геотемператур, превышающих 190°, т.е. деструктивных для УВ. В зону деструктивных геотемператур ларинская свита погружалась дважды: 407-163 млн лет назад и 95,0-0 млн лет назад. Таким образом, УВ ларинской свиты подвергались действию разрушительных геотемператур в общей сложности 339 млн лет, в том числе 244 млн лет до формирования коллекторов палеозойских резервуаров. Вполне ясно, что УВ ларинского источника не могли аккумулироваться в этих резервуарах.

Мирная свита (D₁mr) вошла в ГЗН 386 млн лет назад на 8 млн лет, в $\Gamma 3\Gamma - 378$ млн лет назад на весьма продолжительное время – 31 млн лет. Нефтяной потенциал мирного источника реализован 378 млн лет назад, газовый 347 млн лет назад. На этом временном этапе свита вошла в зону геотемператур, деструктивных для УВ. В зоне деструктивных геотемператур мирная свита находилась 134 млн лет (347-213), то есть еще до формирования коллекторов палеозойских резервуаров. Ясно, что УВ мирного источника не могли аккумулироваться в резервуарах палеозоя.

Чузикская свита (D₂cz) вошла в ГЗН 374 млн лет назад на значительный интервал геологического времени – 23 млн лет, в $\Gamma 3\Gamma - 351$ млн лет назад на продолжительное время – 26 млн лет. Вероятно, нефтяной потенциал чузикского источника полностью реализован 351 млн лет назад, а газовый – 325 млн лет назад. С этого времени свита вошла в зону геотемператур, деструктивных для УВ. Свита находилась в этой зоне не менее 60 млн лет, т. е. до 324 млн лет назад. Вполне ясно, что УВ чузикского источника не могли питать залежи палеозойских горизонтов.

Чагинская свита (D₃cg) вошла в ГЗН 336 млн лет назад – на 12 млн лет, в Γ 3 Γ – 325 млн лет назад (на 5 млн лет). Вероятно, нефтяной потенциал чагинского источника реализован 325 млн лет назад, а газовый – 320 млн лет назад. Начиная с 320 млн лет назад чагинская свита находится в зоне деструктивных геотемператур, т.е. порядка 117 млн лет до начала формирования коллекторов палеозойских горизонтов. Учитывая историю деструктивных геотемператур, маловероятно, что УВ чагинского источника могли питать залежи палеозойских горизонтов.

Кехорегская свита (C,kh). Кехорегская свита вошла в ГЗН 323 млн лет назад, но ненадолго – на 3 млн лет, в ГЗГ – первый раз 320 млн лет назад на весьма продолжительное время – 19 млн лет, и второй раз 24 млн лет назад (еще на 20 млн лет). За свою историю палеозойская кехорегская свита не погружалась в зону деструктивных геотемператур. Если учесть последовательность фаз генерации и эмиграции жидких и газообразных УВ, а также значительный временной период (50-80 млн лет, табл. 14) от завершения ГФГ кехорегской свиты и окончания формирования палеозойских коллекторов, то можно ожидать лишь незначительную аккумуляцию кехорегского газа в резервуарах палеозоя. Такой прогноз подтверждается результатами опробования скважин 7 (табл. 11): в интервалах палеозойских горизонтов, наряду с притоками нефти, получены притоки газа.

Тюменская свита (J_1 , tm) находится в ГЗН с 95 млн лет назад по настоящее время. Свита за свою историю не входила в зону деструктивных геотемператур. Следовательно, тюменская нефть может аккумулироваться в палеозойских резервуарах с 95 млн лет назад и по настоящее время, а геотемпературы резервуаров палеозоя вполне благоприятны для сохранности нефти тюменского источника. Такой предварительный прогноз подтверждается результатами опробования – в интервалах палеозойских горизонтов, как и в пластах тюменской свиты, получены притоки нефти (табл. 11, скважины 8 и 12).

Баженовская свита (J₃bg) находится в высокотемпературной и продолжительной ГФН уже 92 млн лет.

Индекс	Отложения	Время нан		Мощность,	Кровля	
отложений		Начало,	Окончание,	Продолжи-	M	свиты,
на рис. 13		млн лет	млн лет	тельность,		M
	П	назад	назад	млн лет	17	0
	Четвертичные отложения Q	1,64	0	1,64	16 35	0
	Плиоценовые N ₂	4,71	1,64	3,07		16
	Миоценовые N_1 Некрасовская серия Pg_3 nk	24	4,71	19,29	45	51
	Пекрасовская серия г g ₃ пк Средний-верхний олигоцен	32,3	24	8,3	110	96
Kz	Чеганская свита Рg ₂₋₃ hq					
· ·	Верхний эоцен-олигоцен	41,7	32,3	9,4	35	206
	Люлинворская свита Pg ₂ ll					
	Эоцен	54,8	41,7	13,1	65	241
	Талицкая свита Pg ₁ tl	(1.7	540	6.0	20	206
	Палеоцен	61,7	54,8	6,9	20	306
	Ганькинская свита Pg ₁ -K ₂ gn	72.2	61.7	11.5	110	226
	Маастрихт-даний	73,2	61,7	11,5	110	326
	Славгородская свита K ₂ sl	96.5	72.2	12.2	40	436
	Верхний сантон-кампан	86,5	73,2	13,3	40	430
	Ипатовская свита K ₂ ip	89,8	86,5	3,3	180	476
	Коньяк-нижний сантон	02,0	00,5	3,3	100	470
	Кузнецовская свитаК ₂ kz	91,6	89,8	1,8	12	656
	Турон	71,0	0,0	1,0	12	030
K	Покурская свита K ₁₋₂ pk	114,1	91,6	22,5	881	668
	Верхний апт-альб-сеноман	,-	,-	,-		
	Алымская K_1a_{1-2}	120,2	114,1	6,1	0	-
	Апт	- 7	,	- ,		
	Киялинская свита K ₁ kls	132,4	120,2	12,2	627	1549
	Готерив-баррем					
	Тарская свита K_1 tr Валанжин	136,1	132,4	3,7	96	2176
	Куломзинская свита K ₁ klm					
	Берриас-валанжин	145,8	136,1	9,7	255	2272
	Баженовская свита J ₃ bg					
J_3 bg	Титон	151,2	145,8	5,4	21	2527
	Георгиевская свита J ₃ qr					
	Киммеридж	156,6	151,2	5,4	4	2548
J_3	Наунакская свита J ₃ nn					
	Келловей-оксфорд	162,9	156,6	6,3	59	2552
т.,	Тюменская свита J ₁₋₂ tm	200	162.0	45.1	221	2611
$J_{1-2}tm$	Нижняя-средняя юра	208	162,9	45,1	231	2611
-	Размыв каменноугольных отложений	313,2	208	105,2	-1034	-
	Елизаровская свита C ₂ elz	320,2	313,2	7	365	_
C ₁₋₂	Башкирский век	320,2	313,2	/	303	-
C ₁₋₂	Средневасюганская свита C ₁₋₂ sv	326,2	320,2	6	590	-
	Верхний серпухов-башкирский век	320,2	320,2	0	390	-
C_1 kh	Кехорегская свита C_1 kh	358,9	326,2	32,7	430*	2842
CIKII	Турне-средний серпухов	330,7	320,2	32,7	150	2012
D ₃ cg	Чагинская свита D ₃ cg	382,7	358,9	23,8	480	3193
2,05	Фран-фамен	302,7	330,9	25,0	100	3173
D_2cz	Чузикская свита D ₂ cz	390,5	382,7	7,8	470	3673
	Верхний эйфель-живет				.,,	2072
_	Перерыв (скрытое несогласие)	393,3	390,5	2,8	0	_
	Нижний эйфель					
D_1 mr	Мирная толща D_1 mr	407,6	393,3	14,3	400	4143
-	Эмс					
	Лесная свита D ₁ ls	419,2	407,6	11,6	480	4543
	Лохков-прага	,	*	•		
S_2 - D_1	Майзасская свита S_2 mz	423	419,2	3,8	410	5023
-	Пржидол		*	•		
	Большеичская свита S ₂ bl	427,4	423	4,4	209	5433
	Лудлов	*				
S_1 lr	Ларинская свита S ₁ lr	443,4	427,4	16	360	5642
	Лландовер-венлок	6002				
	конструированного разреза, м	6002				
ч актически	й забой скважины, м	3010				

Табл. 12. Осадочный разрез скважины Герасимовская 12, выполненный на основании литолого-стратиграфической разбивки и палеоструктурной реконструкции. Серой заливкой в таблице выделены размыв каменноугольных и перерыв осадконакопления среднедевонских отложений; зеленой заливкой выделены мощности отложений, вскрытых бурением, желтой заливкой – реконструированные мощности отложений; * показана мощность чагинской свиты, которая частично вскрыта бурением (вскрытая мощность составляет 63 м)

Приуроченность/	Температура	a, °		Тепловой поток, мВт/м ²			
глубина, м	Пластовая измеренная	Π o OCB (R^0_{vt})	Модельная (расчётная)	Разница расчётной и измеренной			
J ₃ nn /2586	-	109 (0,72)	109	0	54 /квазистационарный, начиная с юры,		
$J_{1-2}tm/2750$	100	-	101	+1	до современного		
J ₁₋₂ tm /2797	-	117 (0,78)	116	-1			
$J_{1-2}tm /2821$	-	117 (0,78)	117	0			
J ₁₋₂ tm /2825	103	-	103	0			
$J_{1-2}tm/2838$	-	116 (0,77)	117	+1			
C ₁ kh/2908	-	170 (1,17)	170	0	224 /квазистационарный, начиная с силура, до резкого снижения в триасе		

Табл. 13. Сопоставление расчетных и измеренных геотемператур в скважине Герасимовская 12, рассчитанный тепловой поток. Значения ОСВ определены в Лаборатории геохимии нефти и газа Института нефтегазовой геологии и геофизики СО РАН (г. Новосибирск). 2. Для перехода от OCB (R^0 vt) к соответствующей геотемпературе используется (Isaev, Fomin, 2006) диаграмма «Линии значений отражательной способности витринита, нанесенные на измененную схему Коннона» (Хант, 1982)

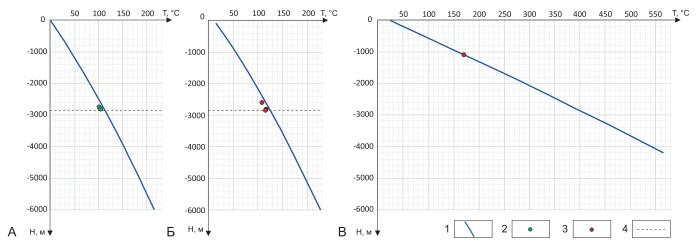


Рис. 12. Сопоставление расчетных и измеренных геотемператур в скважине Герасимовская 12 для современного разреза (А), на время максимального прогрева осадочного чехла в конце палеогена – 24 млн лет назад (Б), на время максимального прогрева палеозойского разреза — 313 млн лет назад (B). 1-3 — геотемпературы (1 — расчетные; 2 — измеренные пластовые; 3 — измеренные по OCB); 4 – положение подошвы осадочного чехла. 24 млн лет назад – время максимальной мощности юрско-палеогеновых отложений и начала резкого спада климатических температур в конце олигоцена. 313 млн лет назад – время максимальной мощности палеозойского разреза

Свита за свою историю не испытывала воздействия деструктивных температур. Баженовская нефть может аккумулироваться в палеозойских резервуарах с 92 млн лет назад и по настоящее время, а температурная история резервуаров палеозоя благоприятна для сохранности нефти баженовского источника. Такой предварительный прогноз подтверждается результатами опробования - в интервалах палеозойских горизонтов получены притоки жидких УВ (табл. 11).

Выводы

Рисунок 14 иллюстрирует, что УВ ларинской, мирнинской, чузикской и чагинской свит не могли формировать залежи нефти и газа в пластах горизонтов М и М,

Таким образом, сингенетичными (по времени генерации, аккумуляции и сохранности) для резервуаров коры выветривания и палеозоя Герасимовского месторождения являются тюменский и баженовский источники нефти,

а также кехорегский газ. Однако генетические анализы нефтей из резервуаров коры и палеозоя показывают, что эти нефти генерированы сапропелевым ОВ. Поэтому нефти резервуаров коры выветривания и палеозоя не могут быть тюменскими, поскольку данная свита содержит гумусовое ОВ.

Роль кехорегского источника газа для пластов М и М, Герасимовского месторождения выглядит незначительной. Слишком поздно формируется палеозойский резервуар ко времени «работы» кехорегского источника газа.

Подводя итог исследованиям в районе Герасимовского месторождения, на котором вскрытая кровля палеозоя представлена отложениями нижнего карбона, можно заключить, что основным («главным») источником УВ доюрских залежей является юрская «баженовская нефть». Наряду с этим, и роль каменноугольного кехорегского источника газа для палеозойских горизонтов может быть значительной (табл. 11, скважина 7).

	Геотемпературы свиты, °С															
			Бажено	вская (J ₃ bg)	Тюмено	жая (J ₁₋₂ tm)	_	гская (C ₁ kh)		кая (D3cg)	-	кая (D ₂ cz)		(D ₁ mr)		кая (S ₁ lr)
ад	Š,	Тепловой поток, мВт/м²	Геотемпературы		еотемпературы		Геотемпературы									
Время, млн. лет назад	«Местный» вековой ход,	йпо	эрат		эрат		эрат									
я, лет	тнь	OBO M ²	МПб	1На Пл 1, М	ЭШИ	ина и 1, м	ЭШИ	1На пи 1, м	ЭШИ	1На II I, М	ЭШИ	1На пі 1, м	ЭШИ	1На ПІ 1, М	MII	1На II I, М
Время, млн. ле	«Местный» вековой ход	Теплов мВт/м²	оте	Глубина кровли свиты, м	юте	Глубина кровли свиты, м	ото	Глубина кровли свиты, м								
0 W ×	0 2 2	54	102	2527	109	2611	119	2763	133	五量 5 3193	149		163	点量号 4143	209	
1,64	1	54	102	2511	110	2595	120	2747	135	3177	151	3673 3657	165	4143	211	5642 5626
4,71	3	54	104	2476	111	2560	122	2712	136	3142	152	3622	166	4092	212	5591
24	16	54	114	2431	121	2515	131	2667	146	3097	161	3577	175	4047	221	5546
32,3 41,7	16 12	54 54	109 103	2321 2286	116 110	2405 2370	126 120	2557 2522	140 134	2987 2952	156 150	3467 3432	170 164	3937 3902	216 209	5436 5401
54,8	19	54	108	2221	115	2305	125	2457	140	2887	156	3367	170	3837	216	5336
61,7 73,2	22 16	54 54	109 99	2201 2091	116 106	2285 2175	126 116	2437 2327	141 131	2867 2757	156 146	3347 3237	170 160	3817 3707	216 206	5316 5206
86,5	22	54	102	2051	100	2175	119	2287	133	2717	149	3197	163	3667	200	5166
89,8	22	54	95	1871	102	1955	112	2107	127	2537	143	3017	157	3487	203	4986
91,6	22	54	92	1859	98	1943 1810	109	2095	123	2525	139	3005	153	3475	198	4974
95,0 110,0	22 21	54 54	86 64	1726 1139	93 70	1223	104 81	2042 1455	118 95	2393 1806	134 111	2873 2286	147 125	3343 2756	193 170	4842 4255
114,1	21	54	57	979	64	1063	75	1215	89	1645	105	2125	119	2595	165	4094
116,3	18 19	54 54	56 54	978 977	63 61	1062 1061	73 71	1214	88 85	1644 1643	104 101	2124 2123	118 114	2594 2593	163 159	4093 4092
120,2 132,4	12	54	25	351	32	435	42	1213 587	57	1043	72	1497	86	1967	139	3466
136,1	12	54	22	255	28	339	39	491	53	921	69	1401	83	1871	129	3370
145,8 151,2	13 14	54 54	13	0	20 20	84 63	30 30	236 215	45 45	666 645	60 61	1146 1125	74 75	1616 1595	120 120	3115 3094
151,2	13	54	-	-	19	59	30	213	45	641	60	1123	73 74	1595	120	3094
162,9	14	54	-	-	19	0	30	152	45	582	61	1062	74	1532	120	3031
208	13 14	138 156	-	-	-	-	28 32	79 79	63 72	351 351	102 118	831	135 157	1301	249 290	2800
265,1	10	224	-	-	_	-	40	0	102	430	164	831 910	220	1301 1380	406	2800 2879
300,7	20	224	-	-	-	-	129	590	192	1020	255	1500	310	1970	496	3469
300,9	20	224 224	-	-	-	-	130	596	193	1026	256	1506	311 328	1976	496	3475 3595
305,0 310,0	20 21	224	-	-	-	-	147 169	716 862	210 231	1146 1292	272 294	1626 1772	349	2096 2242	513 535	3741
313,2	20	224	-	-	-	-	179	955	240	1385	303	1865	359	2335	543	3834
315,0 319,7	20 18	224 224	-	-	-	-	166 130	861 616	227 192	1291 1046	290 253	1771 1526	344 309	2241 1996	530 494	3740 3495
319,7	18	224	-	-	-	-	129	611	192	1040	253	1521	307	1990	494	3490
320,2	18	224	-	-	-	-	125	590	187	1020	250	1500	304	1970	489	3469
323 324,7	19 19	224 224	-	-	-	-	90 68	315 148	151 130	745 578	213 190	1225 1058	267 247	1695 1528	453 432	3194 3027
326,0	20	224	-	-	_	-	51	20	113	450	175	930	230	1400	416	2899
326,2	20	224	-	-	-	-	50	0	111	430	173	910	229	1380	415	2879
335,0 336,5	18 17	224 224	-	-	_	-	41 38	0	94 90	314 295	157 153	794 775	211 207	1264 1245	397 393	2763 2744
339,0	16	224	-	-	_	-	34	0	84	262	147	742	202	1212	388	2711
343,0	16	224	-	-	-	-	30	0	77	209	139	689	195	1159	381	2658
346,5 347,0	17 17	224 224	-	-	-	-	28 29	0	72 72	163 156	135 134	643 636	190 190	1113 1106	375 376	2612 2605
350,0	19	224	-	-	-	-	28	0	69	117	130	597	186	1067	372	2566
351,0	20	224	-	-	-	-	27 27	0	66	104	130	584	184	1054	370	2553
353,0 358,9	21 30	224 224	-	-	_	-	-	0	65 62	78 0	127 126	558 480	182 180	1028 950	368 366	2527 2449
371,0	37	224	-	-	-	-	-	-	53	0	99	236	154	706	339	2205
374,3 377,0	37 35	224 224	-	[- _	-	-	-	-	48 44	0	90 81	169 115	145 135	639 585	331 321	2138 2084
377,0	35	224	-	-	- -	-	-	-	41	0	78	95	132	565	318	2064
378,5	34	224	-	-	-	-	-	-	40	0	76	85	130	555	316	2054
379,0 380,0	34 33	224 224	-	-	-	-	-	-	39 37	0	74 71	75 54	128 125	545 524	314 311	2044 2023
382,7	34	224	-	-	-	-	-	-	-	-	65	0	119	470	304	1969
385,0	35	224	-	-	-	-	-	-	-	-	57	0	102	331	287	1830
386,0 386,2	33 34	224 224	-	- -	-	-	-	-	-	- -	51 49	0	92 90	271 259	278 276	1770 1758
387,0	32	224	-	-	-	-	-	-	-	-	45	0	82	211	268	1710
390,5	22	224	-	-	-	-	-	-	-	-	-	-	47	0	233	1499
391,9 393,3	22 22	224 224	-	- -	-	-	-	-	-	[-	-	-	47 47	1	233 233	1500 1499
400,0	24	224	-	-	-	-	-	-	-	-	-	-	38	0	211	1312
405,0	26	224	-	-	-	-	-	-	-	-	-	-	31	0	196	1172
406,0 407,0	26 26	224 224	-	- -	-	-	-	-	-	[-	-	-	29 28	0	192 190	1144 1116
407,6	27	224	-	-	-	-	-	-	-	-	-	-	-	-	188	1099
413,0	31	224	-	-	-	-	-	-	-	-	-	-	-	-	165	876
419,2 419,4	34 34	224 224	-	- -	-	-	-	-	-	[-	-	-	-	-	133 130	619 597
420,0	34	224	-	-	-	-	-	-	-	-	-	-	-	-	122	533
421,0	34	224	-	-	-	-	-	-	-	-	-	-	-	-	108	425
422,0 422,3	33 33	224 224	-	-	-	-	-	-	-	-	[-	-	-	[-	95 90	317 285
423	33	224	-	-	-	-	-	-	-	-	-	-	-	-	80	209
427,4	29	224	-	-	-	-	-	-	-	-	-	-	-	-	51	0

Табл. 14. Расчетные геотемпературы потенциально материнских свит в разрезе скважины Герасимовская 12. Светло-синей заливкой показаны температуры ГФН, желтой заливкой – НФГ, ГФГ, темно-желтой заливкой – палеотемпературный максимум. Зеленой заливкой обозначены времена размыва каменноугольных и перерыва осадконакопления среднедевонских отложений. Светлофиолетовой заливкой выделены температуры, превышающие температуру начала деструкции УВ. Красной заливкой обозначено время геотемпературы в центре кехорегской свиты (313,2 млн лет назад), соответствующее определению ОСВ в кровле кехорегской $cвиты - R^0 vt = 1,17 (170°C)$

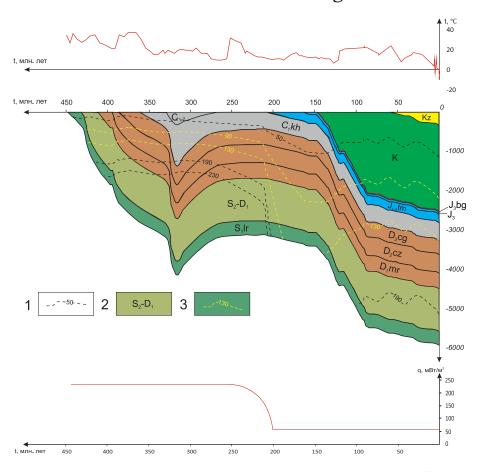
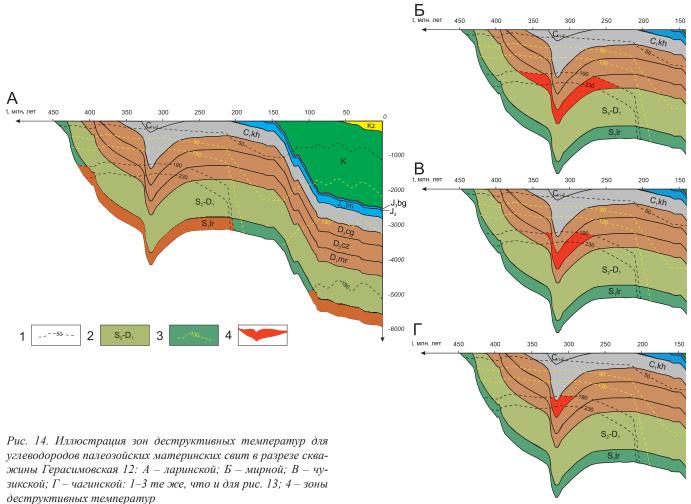



Рис. 13. Палеореконструкции тектонической и термической истории в районе скважины Герасимовская 12: 1 - изотермы; 2 - стратиграфический индекс отложений; 3 - граничные изотермы ГФН. В верхней части рисунка приведен график палеоклиматического векового хода температур на земной поверхности, в нижней – график изменения плотности теплового потока во времени

ЗАКЛЮЧЕНИЕ

Анализ исходных и заключительных характеристик Останинской группы месторождений (табл. 15) позволяет сделать несколько предварительных, но важных выводов относительно проблемы «палеозойской нефти».

Выводы, касающиеся фундаментальных аспектов проблемы:

- 1. Источником палеозойских залежей нефти могут быть как породы доманикоидного типа палеозойских свит, так и юрские нефтематеринские формации. Таким образом, может иметь место как восходящая вертикальная межпластовая миграция УВ, так и нисходящая миграция УВ. Поэтому две концепции «главного источника» являются совместимыми и не должны рассматриваться, как нередко, ортодоксально альтернативными.
- 2. Источником палеозойских залежей газа и газоконденсата являются, скорее всего, только породы доманикоидного типа палеозойских свит.
- 3. «Палеозойским» источником залежей нефти и газа в доюрском НГК могут быть только палеозойские свиты кровли палеозойского фундамента (к примеру, на Останинской группе месторождений – C₁kh и D₃cg). «Юрским» источником залежей нефти в доюрском НГК может быть баженовская свита J₃bg.

Выводы, которые касаются прикладных (поисковых) аспектов проблемы «палеозойской нефти:

- 1. В настоящей работе получены теоретические и прикладные результаты, которые дополнительно аргументируют авторский поисковый критерий нефтегазоносности палеозоя – аномальные геофизические и петрофизические характеристики юрского разреза.
- 2. Отсутствие залежей УВ в юрском разрезе это, скорее всего, негативный признак нефтегазоносности палеозоя.

- 3. Низкая плотность современного теплового потока (скажем, меньше 40 мВт/м²) – это, скорее всего, негативный признак залежей нефти в палеозое.
- 4. Высокие палеотемпературы по ОСВ (например, более 175°) - это, скорее всего, негативный признак нефтяных и газовых залежей в палеозое.
- 5. Исходя из концепции двух «основных источников» «палеозойской нефти» (юрский, палеозойский), есть основания полагать, что нефтяные залежи в палеозое не могут быть богаче нефтяных в юре.

Авторы отдают себе отчет, что приведенный выше анализ и выводы основываются на небольшом материале. Но он представительный и касается актуальной проблемы нефтегазоносности Западной Сибири. Поэтому статья может быть интересна как в теоретическом, так и в прикладном аспекте.

В работах российских и зарубежных исследователей палеотемпературное моделирование очагов генерации нефти и газа обычно выполняется для кайнозойско-мезозойского осадочного чехла. Это уже стало достаточно привычным и уверенно выполняемым. Для изучения нефтегазоносности фундамента, как перспективного объекта наращивания добычи, необходимо выполнять совместное моделирование юрско-мелового «современного» осадочного бассейна и доюрских осадочных «палеобассейнов». При включении в историко-геологический анализ отложений «палеобассейнов» восстановление истории генерационных и аккумуляционных процессов существенно осложняется. И такие работы редки. К тому же, как в работах зарубежных исследователей, так и российских, как правило, за рамками опубликованных материалов остаются конкретные схемы и параметры методик и технологий палеотемпературного моделирования. Поэтому настоящая работа представляется интересной и полезной и в этом плане.

№ п/п	Характеристика	Сельвейкинская площадь (скв. 2)	Останинское месторождение (скв. 438P)	Герасимовское месторождение (скв. 12)
1	Тепловой поток современный квазистационарный начиная с юры, м $\mathrm{Br/m}^2$	41	54	54
2	Палеотемпература по ОСВ в разрезе вскрытого палеозоя: температура, $^{\circ}$ С (R^{0}_{vt}) / свита (глубина, м)	175 (1,35)/ D ₃ cg (3106)	155 (1,05)/ D ₃ cg (2844)	170 (1,17)/ C ₁ kh (2908)
3	Тепловой поток квазистационарный начиная с силура, до резкого снижения в триасе, м $\mathrm{BT/m}^2$	258	223	224
4	Промышленные залежи УВ в юре	«Cyxo»	Газ, конденсат, пластовая вода	«Сухо», нефть, вода
5	Залежи в коре выветривания (пласт М)	Свободный газ	Безводная нефть, газ	Нефть
6	Залежи в коренном палеозое	Разгазированная пластовая вода	Пластовая вода	Нефть, вода, газ
7	Вероятный генезис (источник) газа в доюрском НГК	Частично- аккумулированный малодебитный газ палеозойской чагинской свиты (D_3 cg)	Частично-аккумулированный малодебитный газ палеозойской чагинской свиты (D_3cg)	Значительно- аккумулированный газ палеозойской кехорегской свиты (C_1kh)
8	Вероятный генезис (источник) нефти в доюрском НГК	Источник не выявлен	1) нефть доманикоидных пород палеозойской чагинской свиты (D ₃ cg)? 2) нефть юрской баженовской свиты (J ₃ bg)?	Нефть юрской баженовской свиты (J_3bg)

Табл. 15. Исходные и заключительные характеристики нефтегазоносности исследованных площадей Останинской группы месторождений

Литература

Алеева А.О., Исаев В.И., Лобова Г.А. (2021). Сравнительная геофизическая и петрофизическая характеристика юрских отложений как прогнозно-поисковый признак доюрских залежей углеводородов (Томская область). Новые вызовы фундаментальной и прикладной геологии нефти и газа – ХХІ век: Мат. Всерос. науч. конф. Нововосибирск: ИПЦ НГУ, с. 144-147. https://doi.org/10.25205/978-5-4437-1248-2-144-147

Белозеров В.Б., Гарсия Бальса А.С. (2018). Перспективы поиска залежей нефти в отложениях девона юго-восточной части Западно-Сибирской плиты. Известия Томского политехнического университета. Инжиниринг георесурсов, 329(6), с. 128-139.

Бордюг Е.В. (2012). Генетические типы нефтей продуктивных отложений юго-восточной части Западной Сибири. Автореф. дис. канд. геол.-мин. наук. М: 26 с

Вассоевич Н.Б. (1967). Теория осадочно-миграционного происхождения нефти (исторический обзор и современное состояние). Известия АН СССР. Сер. геол., 11, с. 135-156.

Волкова Н.А., Веселов О.В., Кочергин А.В. (1981). Теплопроводность горных пород Охотоморского региона. Геофизические поля переходной зоны Тихоокеанского типа. Владивосток: ДВО РАН, с. 44-50.

Галиева М.Ф., Алеева А.О., Исаев В.И. (2020). Очаги генерации углеводородов и их аккумуляции в доюрском разрезе Сельвейкинской площади глубокого бурения (Томская область). Нефтегазовая геология. Теория и практика, 15(3), с. 1-16. http://www.ngtp.ru/rub/2020/26_2020.html

Галушкин Ю.И. (2007). Моделирование осадочных бассейнов и оценка их нефтегазоносности. М: Научный Мир, 456 с.

Гедберг Х.Д. (1966). Геологические аспекты происхождения нефти. М: Недра, 124 с.

Гольшев С.И., Падалко Н.Л., Мадишева Р.К., Оздоев С.М., Портнов В.С., Исаев В.И. (2020). Изотопный состав нефтей Арыскумского прогиба (Южный Казахстан). Известия Томского политехнического университета. *Инжиниринг георесурсов*, 331(3), с. 80-89.

Горнов П.Ю. (2009). Геотермические характеристики Средне-Амурской впадины. Известия высших учебных заведений. Геология и разведка, 3, с. 56-61.

Дучков А.Д., Галушкин Ю.И., Смирнов Л.В., Соколова Л.С. (1990). Эволюция температурного поля осадочного чехла Западно-Сибирской плиты. Геология и геофизика, 10, с. 51-60.

Ермаков В.И., Скоробогатов В.А. (1986). Тепловое поле и нефтегазоносность молодых плит СССР. М: Недра, 222 с.

Западная Сибир. Геология и полезные ископаемые России (2000). Т. 2. Под ред. А.Э. Конторовича, В.С. Суркова. СПб: Изд-во ВСЕГЕИ, 477 с.

Запивалов Н.П., Исаев Г.Д. (2010). Критерии оценки нефтегазоносности палеозойских отложений Западной Сибири. Вестник Томского государственного университета, 341, с. 226-232.

Зимин В. (2021). Надежды в тумане. Перспективы стабилизации нефтяной отрасли оценивают осторожнее, чем раньше. Недра и ТЭКплюс Сибири, 7, с. 11-13.

Исаев Г.Д. (2007). Кораллы, биостратиграфия и геологические модели палеозоя Западной Сибири. Новосибирск: Гео, 247 с.

Исаев Г.Д. (2012). Геологическая, палеонтологическая модели палеозоя Западно-Сибирской плиты и перспективы его нефтегазоносности. Георесурсы, 48(6), с. 24-30.

Исаев Г.Д. (2012а). Региональные стратиграфические подразделения палеозоя Западно-Сибирской плиты (по данным исследования табулятоморфных кораллов). Вестник TГУ, 355, с. 161-168

Исаев В.И. (2004). Палеотемпературное моделирование осадочного разреза и нефтегазообразование. Тихоокеанская геология, 23(5), с. 101-115.

Исаев В.И., Искоркина А.А., Лобова Г.А., Фомин А.Н. (2016). Палеоклиматические факторы реконструкции термической истории баженовской и тогурской свит юго-востока Западной Сибири. Геофизический журнал, 38(4), с. 3-25. https://doi.org/10.24028/gzh.0203-3100.v38i4.2016.107798

Исаев В.И., Лобова Г.А., Мазуров А.К., Старостенко В.И., Фомин А.Н. (2018). Районирование мегавпадин юго-востока Западной Сибири по плотности ресурсов сланцевой нефти тогурской и баженовской материнских свит. Геология нефти и газа, 1, с. 15-39. https://doi.org/10.1134/ S1069351318020064

Исаев В.И., Лобова Г.А., Стоцкий В.В., Фомин А.Н. (2018а). Геотермия и зональность сланцевой нефтеносности Колтогорско-Уренгойского палеорифта (юго-восток Западной Сибири). Геофизический журнал, 40(3), с. 54-80. https://doi.org/10.24028/gzh.0203-3100.v40i3.2018.137173

Исаев, В.И., Алеева А.О., Лобова Г.А., Исаева О.С., Старостенко В.И. (2021). О природе палеозойских залежей нефти и их поисковом «отражении» в геофизическом разрезе юрских пластов (юго-восток Западной Сибири). Геофизический журнал, 43(1), с. 93-128. https://doi.org/10.24028/ gzh.0203-3100.v43i1.2021.225502

Исаев В.И., Галиева М.Ф., Алеева А.О., Лобова Г.А., Старостенко В.И., Фомин А.Н. (2021а). Палеотемпературное моделирование очагов генерации углеводородов и их роль в формировании залежей «палеозойской» нефти (Останинское месторождение, Томская область). Георесурсы, 23(1), c. 2-16. DOI: https://doi.org/10.18599/grs.2021.1.1

Исаев В.И., Галиева М.Ф., Лобова Г.А., Крутенко Д.С., Осипова Е.Н. (2021б). Моделирование фанерозойских очагов генерации углеводородов и оценка их роли в формировании залежей «палеозойской» нефти (юго-восток Западной Сибири). Известия Томского политехнического университета. Инжиниринг георесурсов, 332(3), с. 85-98.

Карташов И. (2021). Палеозой может стать брендом области. Недра и ТЭКплюс Сибири, 7, с. 14-16. https://doi.org/10.1016/S1464-2859(21)00162-0

Конторович А.Э., Парпарова Г.М., Трушков П.А. (1967). Метаморфизм органического вещества и некоторые вопросы нефтегазоносности (на примере мезозойских отложений Западно-Сибирской низменности). Геология и геофизика, 2, с. 16-29.

Конторович А.Э, Нестеров И.И., Салманов Ф.К., Сурков В.С. Трофимук А.А, Эрвье Ю.Г. (1975). Геология нефти и газа Западной Сибири. М: Недра, 680 с.

Конторович А.Э., Ильина В.И., Москвин В.И., Андрусевич В.Е., Борисова Л.С., Данилова В.П., Казанский Ю..П, Меленевский В.Н., Солотчина Э.П., Шурыгин Б.Н. (1995). Опорный разрез и нефтегенерационный потенциал отложений нижней юры Нюрольского осадочного суббассейна (Западно-Сибирская плита). Геология и геофизика, 36(6),

Конторович В.А. (2002). Тектоника и нефтегазоносность мезозойско-кайнозойских отложений юго-восточных районов Западной Сибири. Новосибирск: Изд-во СО РАН, 253 с.

Коржов Ю.В., Лобова Г.А., Исаев В.И., Стариков А.И., Кузина М.Я. (2020). Генезис углеводородов доюрского комплекса Ханты-Мансийского месторождения (зона локального сжатия Западно-Сибирской плиты). Геофизический журнал, 42(5), с. 130-147. https://doi.org/10.24028/gzh.0203-3100.v42i5.2020.215076

Коржов Ю.В., Исаев В.И., Жильцова А.А., Латыпова О.В. (2013). Распределение ароматических углеводородов в разрезе отложений нефтегазоносных комплексов (на примере месторождений Красноленинского свода). Геофизический журнал, 35, 1, с. 113-129. https://doi.org/10.24028/ gzh.0203-3100.v35i1.2013.116338

Коржов Ю.В., Исаев В.И., Кузина М.Я., Лобова Г.А. (2013а). Генезис доюрских залежей нефти Рогожниковской группы месторождений (по результатам изучения вертикальной зональности алканов). Известия Томского политехнического университета, 323(1), с. 51-56.

Кутас Р.И., Цвященко В.А., Тарануха Ю.К. (1991). Тепловое поле и температурный режим литосферы Предкавказья. Геофизический журнал,

Курчиков А.Р. (1992). Гидрогеотермические критерии нефтегазоносности. М: Недра, 231 с.

Курчиков А.Р. (2001). Геотермический режим углеводородных скоплений Западной Сибири. Геология и геофизика, 11(42), с. 1846-1853

Лобова Г.А. (2013). Нефтегазоносность Усть-Тымской мегавпадины. Геофизический журнал, 35(4), с. 28-39. https://doi.org/10.24028/gzh.0203-3100.v35i4.2013.111389

Лобова Г.А., Исаев В.И., Кузьменков С.Г., Лунёва Т.Е., Осипова Е.Н. (2018). Нефтегазоносность коллекторов коры выветривания и палеозоя юго-востока Западной Сибири (прогнозирование трудноизвлекаемых запасов). Геофизический журнал, 40(4), с. 73-106. https://doi.org/10.24028/ gzh.0203-3100.v40i4.2018.140611

Мадишева Р.К., Серебренникова О.В., Исаев В.И., Портнов В.С., Оздоев С.М. (2020). Состав биомаркеров и происхождение нефтейАрыскумского прогиба (Южный Казахстан). Известия Томского политехнического университета. Инжиниринг георесурсов, 331(7), с. 116-130.

Мельник И.А., Недоливко Н.М., Зимина С.В. (2020). Вторичные карбонаты юрских песчаных отложений как показатели продуктивности палеозоя. Известия Томского политехнического университета. Инжиниринг георесурсов, 331(3), с. 32-38

Неручев С.Г., Рогозина Е.А., Капченко Л.Н. (1973). Главная фаза газообразования - один из этапов катагенетической эволюции сапропелевого рассеянного органического вещества. Геология и геофизика, 10, с. 14-16. https://doi.org/10.1109/MSPEC.1973.5216838

Оздоев С.М., Мадишева Р.К., Сейлханов Т.М., Портнов В.С., Исаев В.И. (2020). О нефтегазоносности коры выветривания складчатого фундамента Арыскумского прогиба Южно-Торгайского бассейна. Нефть и газ, 1, с. 17-32.

Подобина В.М., Родыгин С.А. (2000). Историческая геология. Томск: Изд-во НТЛ. 264 с.

Решение 6-го Межведомственного стратиграфического совещания по рассмотрению и принятию уточненных стратиграфических схем мезозойских отложений Западной Сибири (2004). Новосибирск: СНИИГГиМС,

Решения совещания по рассмотрению и принятию региональной стратиграфической схемы палеозойских образований Западно-Сибирской gr /m

равнины (1999). Под ред. В.И. Краснова. Новосибирск, 80 с.

Рычкова И.В. (2006). Стратиграфия и палеогеография верхнего меласреднего палеогена юго-востока Западной Сибири. Автореф. дис. канд. геол.-мин. наук. Томск: ТПУ, 22 с.

Стафеев А.Н., Ступакова А.В., Суслова А.А., Гилаев Р.М., Шелков Е.С., Книппер А.А. (2019). Баженовский горизонт Сибири (титон – нижний берриас): тектонические и гидродинамические условия осадконакопления. Георесурсы, 21(2), с. 117-128. https://doi.org/10.18599/grs.2019.2.117-128

Стратиграфия нефтегазоносных бассейнов Сибири (2001). Кн. 5: Палеозой Западной Сибири. Под ред. А. Э. Конторовича. Новосибирск: Изд-во СО РАН, 163 с.

Ступакова А.В., Соколов А.В., Соболева Е.В., Кирюхина Т.А., Курасов И.А., Бордюг Е.В. (2015). Геологическое изучение и нефтегазоносность палеозойских отложений Западной Сибири. Георесурсы, 61(2), с. 63-76. https://doi.org/10.18599/grs.61.2.6

Уилсон Дж.Л. (1986). Карбонатные фации в геологической истории. М: Недра, 464 с.

Фомин А.Н. (1987). Углепетрографические исследования в нефтяной геологии. Новосибирск: Изд-во ИГиГ СО АНСССР, 166 с.

Фомин А.Н. (2011). Катагенез органического вещества и нефтегазоносность мезозойских и палеозойских отложений Западно-Сибирского мегабассейна. Новосибирск: ИНГГ СО РАН. 331 с.

Хант Дж. (1982). Геохимия и геология нефти и газа. М: Мир, 704 с. Хуторской М.Д. (1996). Введение в геотермию: курс лекций. М:

Ablya E., Nadezhkin D., Bordyug E., Korneva T., Kodlaeva E., Mukhutdinov R., Sugden M.A., P.F. van Bergen (2008). Paleozoic-sourced petroleum systems of the Western Siberian Basin - What is the evidence? Organic Geochemistry, 39(8), pp. 1176-1184. https://doi.org/10.1016/j. orggeochem.2008.04.008

Brekhuntsov A.M., Monastyrev B.V., Nesterov I.I. (Jr.) (2011). Distribution patterns of oil and gas accumulations in West Siberia. Russian Geology and Geophysics, 52(8), pp. 781-791. https://doi.org/10.1016/j.rgg.2011.07.004

Burshtein L.M., Zhidkova L.V., Kontorovich A.E., Melenevskii V.N. (1997). Model of catagenesis of organic matter (by using the example of the Bazhenovka Formation). Russian Geology and Geophysics, 38(6), pp.

Dobretsov N.L. (2008). Geological implications of the thermochemical plume model. Russian Geology and Geophysics, 49(7), pp. 441-454. https:// doi.org/10.1016/j.rgg.2008.06.002

Isaev V.I., Fomin A.N. (2006). Loci of Generation of Bazhenov- and Togur-Type Oils in the Southern Nyurol'ka Megadepression. Russian Geology and Geophysics, 47(6), pp. 734-745.

Isaev V.I., Iskorkina A.A, Lobova G.A., Starostenko V.I., Tikhotskii S.A., Fomin A.N. (2018). Mesozoic-Cenozoic Climate and Neotectonic Events as Factors in Reconstructing the Thermal History of the Source-Rock Bazhenov Formation, Arctic Region, West Siberia, by the Example of the Yamal Peninsula. Izvestiya. Physics of the Solid Earth, 54(2), pp. 310-329. https://doi.org/10.1134/ S1069351318020064

Isaev V.I., Kuzmenkov S.G., Ayupov R.Sh., Kuzmin Yu. A., Lobova G.A., Stulov P.A. (2019). Hard-to-recover Reserves of Yugra Oil (West Siberia). Geofizicheskiy Zhurnal, 41(1), pp. 33-43. https://doi.org/10.24028/gzh.0203-3100.v41i1.2019.158862

Isaev, V.I., Lobova, G.A., Fomin, A.N., Bulatov, V.I., Kuzmenkov, S.G., Galieva, M.F., Krutenko, D.S. (2019a). Heat flow and presence of oil and gas (the Yamal peninsula, Tomsk region). Georesursy=Georesources, 21(3), pp. 125-135. https://doi.org/10.18599/grs.2019.3.125-135

Kontorovich A.E., Burshtein L.M., Malyshev N.A, Safronov P.I., et al. (2013). Historical-geological modeling of hydrocarbon generation in the mesozoic-cenozoic sedimentary basin of the Kara sea (basin modeling). Russian

Geology and Geophysics, 54(8), pp. 1179-1226. https://doi.org/10.1016/j. rgg.2013.07.011

Kontorovich A.E., Ershov S.V., Kazanenkov V.A., Karogodin Yu.N., Kontorovich V.A. et al. (2014). Cretaceous paleogeography of the West Siberian sedimentary basin. Russian Geology and Geophysics, 55(5-6), pp. 582-609. https://doi.org/10.1016/j.rgg.2014.05.005

Kontorovich A.E., Fomin A.N., Krasavchikov V.O., Istomin A.V. (2009). Catagenesis of organic matter at the top and base of the Jurassic complex in the West Siberian megabasin. Russian Geology and Geophysics, 50(11), pp. 917-929. https://doi.org/10.1016/j.rgg.2009.10.001

Kontorovich A.E., Kontorovich V.A., Ryzhkova S.V., Shurygin B.N., Vakulenko L.G. et al. (2013a). Jurassic paleogeography of the West Siberian sedimentary basin. Russian Geology and Geophysics, 54(8), pp. 747-779. https://doi.org/10.1016/j.rgg.2013.07.002

Kontorovich V.A. (2007). Petroleum potential of reservoirs at the Paleozoic-Mesozoic boundary in West Siberia: seismogeological criteria. Russian Geology and Geophysics, 48(5), pp. 422-428. https://doi.org/10.1016/j. rgg.2007.05.002

Scotese C. (2016). A new global temperature curve for the Phanerozoic. GSA Annual Meeting Denver, Colorado, Abstracts with Programs, 48(7), pp. 74-31. https://doi.org/10.1130/abs/2016AM-287167

Starostenko V.I., Kutas R.I., Shuman V.N., Legostaeva O.V. (2006). Generalization of the Rayleigh-Tikhonov stationary geothermal problem for a horizontal layer. Izvestiya, Physics of the Solid Earth, 42(12), pp. 1044-1050. https://doi.org/10.1134/S1069351306120081

Сведения об авторах

Валерий Иванович Исаев – доктор геол.-мин. наук, профессор отделения геологии Инженерной школы природных ресурсов, Национальный исследовательский Томский политехнический университет

Россия, 635050, Томск, пр. Ленина, д. 30

Маргарита Фаритовна Галиева – аспирант Отделения геологии Инженерной школы природных ресурсов, Национальный исследовательский Томский политехнический университет

Россия, 634050, Томск, пр. Ленина, д. 30

Галина Лобова – доктор геол.-мин. наук, независимый эксперт по нефтегазовой геологии и геофизике

Литва, 31102, Висагинас, ул. Висагино, д. 25-25

Станислав Григорьевич Кузьменков – доктор геол.-мин. наук, профессор Института нефти и газа, Югорский государственный университет

Россия, 628012, Ханты- Мансийск, ул. Чехова, д. 16

Виталий Иванович Старостенко – доктор физ.-мат. наук, академик НАН Украины, директор Института геофизики им. С.И. Субботина НАН Украины

Украина, 03680, Киев, пр. Палладина, д. 32

Александр Николаевич Фомин – доктор геол.-мин. наук, главный научный сотрудник, Институт нефтегазовой геологии и геофизики им. А.А. Трофимука СО РАН

Россия, 630090, Новосибирск, пр. Коптюга, д. 3

Статья поступила в редакцию 25.03.2022; Принята к публикации 09.07.2022; Опубликована 30.09.2022

IN ENGLISH

ORIGINAL ARTICLE

Paleozoic and Mesozoic hydrocarbon foci of generation and assessment of their role in formation oil deposits of the Pre-Jurassic complex of Western Siberia

V.I. Isaev^{1*}, M.F. Galieva¹, G. Lobova², S.G. Kuzmenkov³, V.I. Starostenko⁴, A.N. Fomin⁵

¹National Research Tomsk Polytechnic University, Tomsk, Russian Federation

²Visaginas, Lithuania

³Ugra State University, Khanty-Mansiysk, Russian Federation

⁴Institute of Geophysics named after S.I. Subbotin of the National Academy of Sciences of Ukraine, Kiev, Ukraine

⁵Trofimuk Institute of Petroleum Geology and Geophysics of Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russian Federation

*Corresponding author: Valery I. Isaev, e-mail: isaevvi@tpu.ru

Abstract. The following problem is solved by the present research: the probable sources of Paleozoic hydrocarbon deposits

are determined on the basis of modeling the hydrocarbon foci of generation Paleozoic-Mesozoic oil source formations (for example,

46 GEORESURSY

the southeast of Western Siberia, Tomsk Region). The research area is the lands Ostanino field group: the Selveikin area of deep drilling, the Ostaninskoye and Gerasimovskoye oil and gas condensate fields. Pre-Jurassic strata with oil source potential, including the Paleozoic Larinskaya (S₁lr), Mirnaya (D₁³mr), Chuzikskaya (D₂cz), Chaginskaya (D₃cg) and Kehoregskaya (C₁kh) formations, as well as Jurassic Bazhenovskaya (J₂bg) and Tyumenskaya (J₁tm) formations, and, accordingly, the reservoirs of the weathering crust and bed-rock Paleozoic reservoirs are the objects of study. The subject of analysis was selected in accordance with the concept of the geothermal regime of the subsoil, as a leading factor in the implementation of the generation potential of the parent sediments. The research methods are digital paleotemperature modeling and historical-geological analysis.

The results and conclusions concerning the fundamental problems of "Paleozoic oil" are obtained. 1. Source of the Paleozoic oil deposits can be both the Domanic type rocks of the Paleozoic formations and the Jurassic oil source formations. Thus, both upward vertical interstratal HC migration and downward HC migration can take place. Therefore, the two concepts of "main source" are compatible and should not be considered, as often, orthodoxly alternative. 2. The domanicoid rocks of the Paleozoic formations are most likely the source for Paleozoic gas and gas condensate deposits. 3. Paleozoic formations the roof of the bed-rock Paleozoic (on the Ostankinskaya group of fields – C₁kh and D₃cg) can be only the source of the «Paleozoic oil» and gas deposits in the Pre-Jurassic oil and gas complex. 4. Bazhenov formation – J,bg may be the "Jurassic" source of oil deposits in the Pre-Jurassic oil and gas complex. The results were obtained and conclusions were drawn concerning the applied (search) aspects of the problem: 1. Results additionally substantiate the author's search criterion for the oil and gas content of the Paleozoic - these are anomalous geophysical and petrophysical characteristics of the Jurassic section. 2. The absence of hydrocarbon deposits in the Jurassic section is most likely a negative sign of the Paleozoic oil and gas content. 4. The low density of the modern heat flow (less than 40 mW/m²) is most likely a negative sign of oil deposits in the Paleozoic. 3. High paleotemperatures in terms of VR (more than 175°C) are most likely a negative sign of oil and gas deposits in the Paleozoic. 4. Reasons have been obtained to state that oil deposits in the Paleozoic cannot be richer than oil deposits in the Jurassic.

Key words: Pre-Jurassic complex, modeling the hydrocarbon foci of generation Paleozoic-Mesozoic oil source formations, digital paleotemperature modeling and historical-geological analysis, the results and conclusions concerning the fundamental problems of «Paleozoic oil», Western Siberia

Recommended citation: Isaev V.I., Galieva M.F., Lobova G., Kuzmenkov S.G., Starostenko V.I., Fomin A.N. (2022). Paleozoic and Mesozoic hydrocarbon foci of generation and assessment of their role in formation oil deposits of the Pre-Jurassic complex of Western Siberia. Georesursy = Georesources, 24(3), pp. 17–48. DOI: https:// doi.org/10.18599/grs.2022.3.3

References

Ablya E., Nadezhkin D., Bordyug E., Korneva T., Kodlaeva E. et al. (2008). Paleozoic-sourced petroleum systems of the Western Siberian Basin - What is the evidence? Organic Geochemistry, 39(8), pp. 1176-1184. https://doi. org/10.1016/j.orggeochem.2008.04.008

Aleeva A.O., Isaev V.I., Lobova G.A. (2021). Comparative geophysical and petrophysical characteristics of the Jurassic rocks as a prospecting indicator of the pre-Jurassic deposits (Tomsk Region). Theoretical and Practical Oil and Gas Geology: new challenges: Proc. Russ. Sci. Conf. Novosibirsk: IPC NSU, pp. 144-147. (In Russ.) https://doi.org/10.25205/978-5-4437-1248-2-144-147

Belozerov V.B., Garcia A.S. (2018). Prospects of searching for oil reservoirs in the Devonian deposits of the south-eastern part of the Western-Siberian plate. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering, 329(6), pp. 128-139. (In Russ.)

Bordyug E.V. (2012). Oil types of different genesis in reservoirs within the southeastern part of Western Siberia. Abstract Cand. geol. and min. sci. diss. Moscow, 26 p. (In Russ.)

Brekhuntsov A.M., Monastyrev B.V., Nesterov I.I. (Jr.) (2011). Distribution patterns of oil and gas accumulations in West Siberia. Russian Geology and Geophysics, 52(8), pp. 781-791. https://doi.org/10.1016/j.rgg.2011.07.004

Burshtein L.M., Zhidkova L.V., Kontorovich A.E., Melenevskii V.N. (1997). Model of catagenesis of organic matter (the example of the Bazhenovka Formation). Russian Geology and Geophysics, 38(6), pp. 1107-1115

Dobretsov N.L. (2008). Geological implications of the thermochemical plume model. Russian Geology and Geophysics, 49(7), pp. 441-454. https:// doi.org/10.1016/j.rgg.2008.06.002

Duchkov A.D., Galushkin Yu.I., Smirnov L.V., Sokolova L.S. (1990). The evolution of the sedimentary cover temperature field of the West Siberian Plate. Geologiya i geophizika, 10, pp. 51-60. (In Russ.)

Ermakov V.I., Skorobogatov V.A. (1986). Thermal field and oil and gas potential of immature plates within USSR. Moscow: Nedra, 222 p. (In Russ.) Fomin A.N. (1987). Coal petrological research in Petroleum Geology. Novosibirsk, IGG SO AS USSR, 166 p. (In Russ.)

Fomin A.N. (2011). Catagenesis of organic matter and oil-and-gas of the Mesozoic and Paleozoic deposits of the Western Siberian megabasin. Novosibirsk: IPGG SB RAS, 331 p. (In Russ.)

Galieva M.F., Aleeva A.O., Isaev V.I. (2020). The sources of hydrocarbon generation and their accumulation in the pre-Jurassic section of the Selveikinskaya deep drilling area (Tomsk region). Neftegazovaya Geologiya. Teoriya I Praktika = Petroleum Geology - Theoretical and Applied Studies, 15(3), pp. 1-16. http://www.ngtp.ru/rub/2020/26 2020.html

Galushkin Yu.I. (2007). Sedimentary basins modeling and assessment their oil-gas generation. Moscow: Nauchniy mir, 456 p. (In Russ.)

Golyshev S.I., Padalko N.L., Madisheva R.K., Ozdoev S.M., Portnov V.S., Isaev V.I. (2020). Isotopic composition of the Aryskum depression oil (South Kazakhstan). Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering, 331(3), pp. 80-89. (In Russ.)

Gornov P.Yu. (2009). Geothermal characteristics of Middle Amur depression. Proceedings of higher educational establishments. Geology and Exploration, 3, pp. 56-61. (In Russ.)

Hedberg H.D. (1966). Geologic aspects of origin of petroleum. Translated from English. Moscow: Nedra, 124 p. (In Russ.)

Hunt J.M. (1982). Petroleum Geochemistry and Geology. Translated from English. Moscow, Mir, 704 p. (In Russ.)

Isaev G.D. (2007). Corals, biostratigraphy, and geological models of the Paleozoic strata of West Siberia. Novosibirsk: Geo, 247 p. (In Russ.)

Isaev G.D. (2012). Geological and paleogeographic models and prospects of oil-and-gas bearing capacity of the Paleozoic of the Western Siberian Plate. Georesursy = Georesources, 48(6), pp. 24-30. (In Russ.)

Isaev G.D. (2012a). Regional stratigraphic subdivisions of the Paleozoic of the West-Siberian plate. Tomsk State University Journal, 355, pp. 161-168.

Isaev V.I. (2004). Paleotemperature modeling of the sedimentary section, and oil-and-gas generation. Geology of the Pacific Ocean, 23(5), pp. 101-115. (In Russ.)

Isaev V.I., Iskorkina A.A., Lobova G.A., Fomin A.N. (2016). Paleoclimate's factors of reconstruction of thermal history of petroleum bazhenov and togur suites southeastern Western Siberia. Geofizicheskiy Zhurnal, 38(4), pp. 3-25. (In Russ.)

Isaev V.I., Lobova G.A., Mazurov A.K., Starostenko V.I., Fomin A.N. (2018). Zoning of mega-depressions by shale oil generation density of Togur and Bazhenov source suites in the southeast of Western Siberia. Geologiya Nefti

i Gaza = Russian Oil And Gas Geology, 1, pp. 15-39. (In Russ.)
Isaev V.I., Lobova G.A., Stotskiy V.V., Fomin A.N. (2018a). Geothermy and zoning of shale oil potential of the Koltogor-Urengoy paleorift (southeast of Western Siberia). Geofizicheskiy zhurnal, 40(3), pp. 54-80. (In Russ.) https:// doi.org/10.24028/gzh.0203-3100.v40i3.2018.137173

Isaev V.I., Iskorkina A.A, Lobova G.A., Starostenko V.I., Tikhotskii S.A., Fomin A.N. (2018b). Mesozoic-Cenozoic Climate and Neotectonic Events as Factors in Reconstructing the Thermal History of the Source-Rock Bazhenov Formation, Arctic Region, West Siberia, by the Example of the Yamal Peninsula. Izvestiya. Physics of the Solid Earth, 54(2), pp. 310-329. https://doi.org/10.1134/ S1069351318020064

Isaev V.I., Kuzmenkov S.G., Ayupov R.Sh., Kuzmin Yu. A., Lobova G.A., Stulov P.A. (2019). Hard-to-recover Reserves of Yugra Oil (West Siberia). Geofizicheskiy Zhurnal, 41(1), pp. 33-43. (In Russ.) https://doi.org/10.24028/ gzh.0203-3100.v41i1.2019.158862

Isaev, V.I., Lobova, G.A., Fomin, A.N., Bulatov, V.I., Kuzmenkov, S.G., Galieva, M.F., Krutenko, D.S. (2019a). Heat flow and presence of oil and gas (the Yamal peninsula, Tomsk region). Georesursy=Georesources, 21(3), pp. 125-135. https://doi.org/10.18599/grs.2019.3.125-135

Isaev, V.I, Aleeva, A.O, Lobova, G.A, Isaeva, O.S., Starostenko, V.I. (2021). On the nature of Paleozoic oil deposits and their exploratory in the geophysical section of the Jurassic layers (southeast of Western Siberia). Geofizicheskiv Zhurnal, 43(1), pp. 93-128. (In Russ.)

Isaev V.I., Galieva M.F., Aleeva A.O., Lobova G.A., Starostenko V.I., Fomin A.N. (2021a). Paleotemperature modeling of hydrocarbon generation centers and their role in the formation of «Paleozoic» oil deposits (Ostaninskoe

field, Tomsk region). Georesursy = Georesources, 23(1), pp. 2-16. https:// doi.org/10.18599/grs.2021.1.1

Isaev V.I., Galieva M.F., Lobova G.A., Krutenko D.S., Osipova E.N (2021b). Modeling of Phanerozoic hydrocarbon generation centers and assessment of their role in the formation of «Paleozoic» oil deposits (southeast of Western Siberia). Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering, 332(3), pp. 85-98. (In Russ.)

Kartashov I. (2021). The Paleozoic may become the brand of the region. Nedra i TEK Sibiri, 7, pp. 14-16. (In Russ.)

Khutorskoy M.D. (1996). Introduction to Geothermy. Moscow: RUDN Publ., 156 p. (In Russ.)

Kontorovich V.A. (2002). Tectonics and oil and gas potential of the Mesozoic and Cenozoic sediments in the south-eastern part of Western Siberia. Novosibirsk, SO RAN Publ., 253 p. (In Russ.)

Kontorovich V.A. (2007). Petroleum potential of reservoirs at the Paleozoic-Mesozoic boundary in West Siberia: seismogeological criteria. Russian Geology and Geophysics, 48(5), pp. 422-428. https://doi. org/10.1016/j.rgg.2007.05.002

Kontorovich A.E., Parparova G.M., Trushkov P.A. (1967). Metamorphism of organic matter and some issues concerning oil and gas potential (a study of the Mezozoic rocks within Western Siberian lowland). Geologiya i geofizika, 2, pp. 16-29. (In Russ.)

Kontorovich A.E, Nesterov I.I., Salmanov F.K. et al. (1975). Oil and gas Geology of Western Siberia. Moscow, Nedra, 680 p. (In Russ.)

Kontorovich A.E., Ilyina V.I., Moskvin V.I., Andrusevich V.E., Borisova L.S., Danilova V.P. et al. (1995). Reference section and oil-producing potential of the Lower-Jurassic deposits of the Nyurolka sedimentary subbasin (West-Siberian Plate). Geologiya i Geofizika, 36(6), pp. 110-126. (In Russ.)

Kontorovich A.E., Fomin A.N., Krasavchikov V.O., Istomin A.V. (2009). Catagenesis of organic matter at the top and base of the Jurassic complex in the West Siberian megabasin. Russian Geology and Geophysics, 50(11), pp. 917-929. https://doi.org/10.1016/j.rgg.2009.10.001

Kontorovich A.E., Burshtein L.M., Malyshev N.A, Safronov P.I., S.A. Gus'kov S.A., Ershov S.V., Kazanenkov V.A. et al. (2013). Historicalgeological modeling of hydrocarbon generation in the mesozoic-cenozoic sedimentary basin of the Kara sea (basin modeling). Russian Geology and Geophysics, 54(8), pp. 1179-1226. https://doi.org/10.1016/j.rgg.2013.07.011

Kontorovich A.E., Kontorovich V.A., Ryzhkova S.V., Shurygin B.N., Vakulenko L.G. et al. (2013a). Jurassic paleogeography of the West Siberian sedimentary basin. Russian Geology and Geophysics, 54(8), pp. 747-779. https://doi.org/10.1016/j.rgg.2013.07.002

Kontorovich A.E., Ershov S.V., Kazanenkov V.A., Karogodin Yu.N., Kontorovich V.A. et al. (2014). Cretaceous paleogeography of the West Siberian sedimentary basin. Russian Geology and Geophysics, 55(5-6), pp. 582-609. https://doi.org/10.1016/j.rgg.2014.05.005

Korzhov Yu.V., Isaev V.I., Kuzina M.Ya., Lobova G.A. (2013a). Genesis of the pre-Jurassic oil deposits of the Rogozhnikovo group of fields (based on results of vertical alkanes zoning studying). Bulletin of the Tomsk Polytechnic University, 323(1), pp. 51-56. (In Russ.)

Korzhov Yu.V., Isaev V.I., Zhiltsova A.A., Latypova O.V. (2013). Distribution of aromatic hydrocarbons in the context of sediments of oil and gas bearing complexes (on the example of Krasnoleninsky arch deposits). Geofizicheskiy Zhurnal, 35(1), pp. 113-129. (In Russ.)

Korzhov Yu.V., Lobova G.A., Isaev V.I., Starikov A.I., Kuzina M.Ya. (2020). Hydrocarbons genesis of pre-Jurassic complex in Khanty-Mansiysk field (the zone of West Siberian plate local compression). Geofizicheskiy Zhurnal, 42(5), pp. 130-147. (In Russ.)

Kurchikov A.R. (1992). Hydrogeothermal criteria of oil and gas potential. Moscow: Nedra Publ., 231 p. (In Russ.)

Kurchikov A.R. (2001). The geothermal regime of hydrocarbon pools in West Siberia. Russian Geology and Geophysics, 42(11-12), pp. 1846-1853.

Kutas R.I., Cvjashhenko V.A., Taranuha Yu.K. (1991). The heat flow and temperature regime of the Ciscaucasian litosphere. Geofizicheskiy Zhurnal, 5, pp. 56-63. (In Russ.)

Lobova G.A. (2013). Oil and gas presence of Ust-Tym mega-depression. Geofizicheskiy Zhurnal, 35(4), 28-39. (In Russ.)

Lobova, G.A., Isaev, B.I., Kuzmenkov, S.G., Luneva, T.E., Osipova, E.N. (2018). Oil and gas reservoirs of weathering crusts and Paleozoic basement in the southeast of Western Siberia (forecasting of hard-to-recover reserves). Geofizicheskiy Zhurnal, 40(4), 73-106. (In Russ.)

Madisheva R.K., Serebrennikova O.V., Isaev V.I., Portnov V.S., Ozdoev S.M. (2020). Composition of biomarkers and origin of oils of the Aryskum depression (South Kazakhstan). Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering, 331(7), pp. 116-130. (In Russ.)

Mel'nik I.A., Nedolivko N.M., Zimina S.V. (2020). Secondary carbonates of Jurassic sand deposits as indicators of the Paleozoic productivity. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering, 331(3), pp. 32-38. (In Russ.)

Neruchev S.G., Rogozina E.A., Kapchenko L.N. (1973). Main Phase of Petroleum Generation as a Stage of Catagenetic Evolution of Dispersed Sapropelic Vegetable Organic Matter. Geologiya i Geofizika, 10, pp. 14-17. (In Russ.)

Ozdoev S.M., Madisheva R.K., Seilkhanov T.M., Portnov V.S., Isaev V.I. (2020). Oil reservoirs of the cristalline basement of Aryskum downfold of South-Torgay depression. Neft i gas, 1, pp. 17-32. (In Russ.)

Podobina V.M., Rodygin S.A. (2000). Historical Geology. Tomsk: NTL Publ., 264 p. (In Russ.)

Resolution of considering and admitting regional stratigraphic scheme of Paleozoic formations within Western Siberian Plain conference (1999). Ed. V.I. Krasnov. Novosibirsk: SB RAS Publ., 80 p. (In Russ.)

Rychkova I.V. (2006). Stratigraphy and paleogeography of the Upper Cretaceous - the Middle Paleogene within the southeastern of Western Siberia. Abstract Cand. geol. and min. sci. diss. Tomsk: TPU, 22 p. (In Russ.)

Scotese C. (2016). A new global temperature curve for the Phanerozoic. GSA Annual Meeting Denver, 48(7), pp. 74-31. https://doi.org/10.1130/ abs/2016AM-287167

Stafeev A.N., Stoupakova A.V., Suslova A.A., Gilaev R.M., Shelkov E.S., Knipper A.A. (2019). Bazhenov horizon of Siberia (Tithonian-Lower Berriasian): tectonic and hydrodynamic conditions of sedimentation. Georesursy = Georesources, 21(2), pp. 117-128. (In Russ.) https://doi. org/10.18599/grs.2019.2.117-128

Starostenko V.I., Kutas R.I., Shuman V.N., Legostaeva O.V. (2006). Generalization of the Rayleigh-Tikhonov stationary geothermal problem for a horizontal layer. Izvestiya, Physics of the Solid Earth, 42(12), pp. 1044-1050. https://doi.org/10.1134/S1069351306120081

Stoupakova A.V., Sokolov A.V., Soboleva E.V., Kiryukhina T.A., Kurasov I.A., Bordyug E.V. (2015). Geological survey and petroleum potential of Paleozoic deposits in the Western Siberia. *Georesursy = Georesources*, 2(61), 63-76. (In Russ.) http://dx.doi.org/10.18599/grs.61.2.6

Stratigraphy of oil and gas basins of Siberia (2001). Vol. 5. The Paleozoic of Western Siberia. Ed. A.E. Kontorovich. Novosibirsk: SB RAS Publ., 163 p. (In Russ.)

The 6th resolution of the Interdepartmental stratigraphic council concerning introducing and accepting updating stratigraphic schemes of the Mesozoic of Western Siberia (2004). Novosibirsk: SRIGGMRM, 114 p.

Vassoevich N.B. (1967). The biogenic theory of petroleum and gas origin (historical review and current state). Izvestiya AN SSSR. Seriya geologiya, 11, pp. 135-156. (In Russ.)

Volkova N.A., Veselov O.V., Kochergin A.V. (1981). Thermal conductivity of rocks within Okhotsk sea region. Geophysical fields of transition zone of the Pacific type. Vladivostok: FEB RAS, pp. 44-50. (In Russ.)

Wilson J.L. (1986). Carbonate facies in geologic history. Translated from English. Moscow: Nedra, 464 p. (In Russ.)

Zapivalov N.P., Isaev G.D. (2010). Criteria of estimation of oil-andgas-bearing Palaeozoic deposits of Western Siberia. Tomsk State University Journal, 341, pp. 226-232. (In Russ.)

Zimin V. (2021). Hope in the fog. The prospects for stabilizing the oil industry are being assessed more cautiously than before. Nedra i TEK Sibiri, 7, pp. 11-13. (In Russ.)

About the Authors

Valery I. Isaev – Dr. Sci. (Geology and Mineralogy), Professor, Department of Geology, School of Earth Sciences & Engineering, National Research Tomsk Polytechnic University

30, Lenin Ave., Tomsk, 634050, Russian Federation

Margarita F. Galieva - Postgraduate student, Department of Geology, School of Earth Sciences & Engineering, National Research Tomsk Polytechnic University;

30, Lenin ave., Tomsk, 634050, Russian Federation

Galina Lobova - Dr. Sci. (Geology and Mineralogy), independent expert in oil-and-gas geology and geophysics

25-25, Visagino street, Visaginas, 31102, Lithuania

Stanislav G. Kuzmenkov - Dr. Sci., (Geology and Mineralogy), Professor, Institute of Oil and Gas, Yugra State University

16, Chekhov street, Khanty-Mansiysk, 628012, Russian Federation

Vitaly I. Starostenko - Dr. Sci., Academician of NASU, Institute of Geophysics named after S.I. Subbotin of the National Academy of Sciences of Ukraine

Ukraine, 32, Palladin Avenue, Kiev, 03142, Ukraine

Alexander N. Fomin - Dr. Sci. (Geology and Mineralogy), Chief Researcher, Trofimuk Institute of Petroleum Geology and Geophysics of Siberian Branch of Russian Academy of Sciences

3, Ak. Koptyug ave., Novosibirsk, 630090, Russian Federation

Manuscript received 25 March 2022; Accepted 9 July 2022; Published 30 September 2022