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The relevance of the development of a methodology for the operational assessment of the bottom-hole
formation zone (the permeability of the bottom-hole formation zone and the skin factor) is primarily due to
economic considerations, since existing approaches to its definition based on hydrodynamic studies lead to
shortages and increased risks of failure to ensure the output of the well. In this regard, the use of modern
methods of working with big data, such as deep learning of artificial neural networks, will ensure monitoring
of the condition of the bottom-hole zone of the well formation without stopping them for hydrodynamic tests,
which will reduce losses for oil production enterprises. It will allow for operational analysis for effective and
timely application of intensification technologies, enhanced oil recovery. The authors analyzed the existing
methods for determining the bottom-hole characteristics of the formation and machine learning approaches
in the direction of solving this problem. The article presents a methodology for the operational assessment
of the state of the bottom-hole formation zone: the permeability of the near bottomhole zone (NBHZ) and
the skin factor using artificial neural network training approaches based on geological, operational data
and the results of interpretation of hydrodynamic studies on the example of sandstones of oil fields in the
Perm Region. A fully connected neural network was used to predict the NBHZ permeability. The article
presents the results of testing various neural network architectures: the number of layers and neurons in
layers with the choice of the best one. Some techniques were used to prevent over-training of models. The
author’s methodology for assessing the skin factor of wells is proposed using a comprehensive analysis of
the constructed statistical models and training models of artificial neural networks to solve the regression
problem. In future studies, it is planned to use recurrent and convolutional neural networks to study the
dynamic components of the formation of the bottom-hole formation zone and create an integrated approach
to solve the problem.
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1. Introduction we will consider such parameters as the permeability

A significant portion of the remaining resources of
oil and gas fields are concentrated in complex reservoirs,
the permeability and porosity of which are generally low
or ultra-low (Kantaatmadja et al., 2019; Alghazal et al.,
2020; He et al., 2022), which causes additional filtration
resistance when filtering hydrocarbons. The state of
the bottomhole formation zone (BHZ) in reservoirs
of this type plays an important role in the movement
of fluids from the formation to the well. In this work,
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of the reservoir zone and the skin factor, on which the
productivity of production and injectivity of injection
wells, the success of stimulation methods and methods
ofincreasing oil recovery depend (Byrne, Mcphee, 2012;
Gouda, Attia, 2022).

In real formation conditions, deterioration of the
condition of the bottomhole zone of a well can be caused
by exposure to clay mud when drilling a productive
formation, flushing of the bottomhole with various
process fluids (water, acid, steam, etc.), clogging of
formation voids with reaction products, deposition
of organic substances, etc. (Al-Obaidi, 2016; Yang
et al., 2023; Dvoynikov et al., 2024). Today, various
approaches are known that allow one to evaluate and
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predict the skin factor in various geological and physical
conditions. For example, the mathematical model of the
skin factor presented in (Mahmoudi et al., 2016) takes
into account formation damage and flow convergence.
The work (Xie, 2015) performed a finite element analysis
and studied the influence of the length of the slot holes
and their structure on the filtration of fluid flow, as well
as on the skin factor. The authors (Sivagnanam et al.,
2017) in their work used CFD (Computational Fluid
Dynamics) — a k—e-model of turbulence, built on the
basis of a modified Darcy’s law, which takes into account
inertial effects. Studies (Dong et al., 2018; Abobaker
et al., 2021) proposed mathematical models of the
skin factor of inclined wells in anisotropic reservoirs.
Most models based on optimization of the Hawkins
skin factor equation consider the radius of the damage
zone in the direction from the “toe” to the “root” of the
wellbore as a constant, linear and parabolic distribution.
The work (Wang et al., 2023) optimized the skin factor
model, assuming that the distribution of the damage
zone along the horizontal wellbore has a parabolic
decreasing shape. As the cement content increases, the
rock can gradually turn into chemogenic rock, which
can worsen the permeability properties of the reservoir
and gradually turn it into unproductive rock, since
this creates a surface layer in the wellbore zone (Al-
Obaidi, Khalaf, 2018; Abdulaziz et al., 2022). The work
(Khairullin et al., 2016) considers an approach based on
the simultaneous use of data on changes in pressure and
temperature at the bottom of the well with subsequent
quantitative assessment of formation parameters and
skin factor values. The authors (Kubota, Gioria, 2022;
Gomaa et al., 2022) proposed an original solution for
using regression models based on retrospective values
of bottomhole pressure and fluid production to estimate
the skin factor during well shutdowns for research. In
these works, using various approaches, the influence
of geological and technological parameters on the skin
factor was studied, the determination of which is of
fundamental importance for assessing the success of
intensification measures.

Permeability prediction is one of the current
researches in oil and gas industry (Zhou et al., 2024;
Wang et al., 2024). To date, there is a small amount
of published work on the application of machine
learning methods to solve the problem of uncertainty
in predicting BHZ permeability (Bennis, Torres-Verdin,
2019; Eriavbe, Okene, 2019; Singh et al., 2020; Bennis,
Torres-Verdin, 2023; Rashid et al., 2023; Pei et al.,
2024). The most adapted and frequently used method
of artificial intelligence (Al) technologies for predicting
reservoir properties based on well logging data are neural
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networks and fuzzy logic (Dong et al., 2023). These
methods estimate and predict reservoir parameters more
accurately and reliably compared to traditional methods
(Matinkia et al., 2023). However, the use of machine
learning algorithms to interpret geophysical survey
data to obtain reservoir characteristics is complicated
by problems of subjectivity of interpretation (Negara et
al.,2016; Aygun et al., 2023; Liu et al., 2023). Artificial
intelligence is used to predict permeability using the
calculated HFU (Hydraulic Flow Units) parameter
(Bahaloo et al., 2023). The results show that Al with
HFU gives a good estimate of permeability (Alobaidi,
2016). In a study by (Hameed, Hamd-Allah, 2023),
permeability predicted by an Al model more accurately
described the well’s operating history. In (Liu et al.,
2020; Zakharov et al., 2022), the feasibility and accuracy
of automated interpretation of pressure build-up curves
to determine near-wellbore reservoir characteristics
using a convolutional neural network was assessed. It
has also been noted that permeability calculations using
reservoir simulation methods are greatly affected by
uncertainty in the interpretation of reservoir thickness
(Bist et al., 2023; Li et al., 2023).

Assessing and predicting the permeability of the
bottomhole zone of wells and the skin factor are a
primary task, the solution of which will allow a more
reasonable approach to the selection of technological
operating modes, methods for intensifying well
production and increasing oil recovery. However, at
present, little attention is paid to this; to make various
kinds of decisions, the permeability of the remote zone
of the formation (RFZ), which is determined according to
the data of hydrodynamic testing of wells (well testing),
is used to make various kinds of decisions.

The purpose of this article is to improve and adapt
machine learning methods based on historical data from
the development of hydrocarbon fields to assess and
predict such parameters of the state of the near-wellbore
formation zone as skin factor and BHZ permeability.

2. Materials and methods

Data from 486 hydrodynamic studies of production
wells were used (real names of fields and well locations
are not indicated due to the confidentiality of this
information), processed in the KAPPA Workstation
software product (Saphir module) with determination
of the skin factor (S) and RFZ permeability (k). 39
indicator diagrams with determination of the skin factor
and permeability of the near-wellbore formation zone
(ky,,,) were interpreted.

The following parameters were used to predict &,
values:
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P .~ bottomhole pressure of well flowing, MPa;
P —reservoir pressure, MPa;

P:t — saturation pressure of oil with gas, MPa;
0 — liquid flow rate, m*/day;

h — effective thickness of the formation, m;
GOR - gas-oil ratio, m’/t;
W — water cut, %;

m — porosity, %;

Q m?

R =
k (Pres—Pwf)-h’ day-MPa’

— calculated coefficient

of specific well productivity to improve the accuracy of
the model,;

S — skin factor.

To establish individual patterns of formation of the
permeability of the bottom-hole zone of the formation
(phase for oil), a sample was used, previously ranked by
permeability &,
After ranking, a stepwise modeling procedure was
performed using multiple linear regression. This process
is described in detail in (Galkin et al., 2021; Ponomareva
etal., 2022), so this article outlines only its main stages.
At the first stage, a model is built using the first three
rows of the table with a data sample (n = 3), then the
second model with a data sample (n = 4), etc.

Fig. 1 shows that a sharp decrease in the multiple
correlation coefficient (R?*) occurs when the BHZ
permeability is less than 1 pm?. Despite the relatively
large R? value on the full data set (0.812), the model has
a large standard error of the mean — 0.191 pm?.

Models built for different BHZ permeability ranges
are presented in Fig. 2 and in Table 1. Statistical
performance characteristics are also calculated for each
model. According to the analysis of the coefficients
of determination, the accuracy of the models and the

from maximum to minimum values.
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Fig. 1. Multiple correlation coefficient (R?) at different BHZ
permeability ranges
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Fig. 2. Scatterplot of predicted and actual BHZ permeability
values (ranking by BHZ permeability)

BHZ permeability range, umz Regression model

1.1-4.5 kpnz = —21.813 — 0.017R; + 0.017W + 0.137S + 0.03Q — 0.418h — 3.243P,.; +1.976P,+3.179P,,5 +
0.041m — 0.034GOR
R%: 0.429; 0.767; 0.961; 0.971; 0.986; 0.989; 0.989; 0.995; 0.998; 0.999

0.39—1.06 kpuz = 0.777 — 0.014R;, + 0.0002W — 0.019GOR + 0.194P,,, — 0.748P,.; + 0.721P,;+ 0.019S +
0.017Q — 0.07h + 0.003m
R%: 0.268; 0.372; 0.377; 0.417; 0.435; 0.519; 0.697; 0.702; 0.795; 0.797

0.066—0.39 kprz=10.556 + 0.014R; + 0.001W — 0.022Py, - 0.007m + 0.001Q — 0.003h — 0.009P,; +
0.009P,,+ 0.001S
R%: 0.365; 0.436; 0.441; 0.457; 0.469; 0.475; 0.488; 0.504; 0.507

0.042—0.065 kpuz= —0.119 + 0.011P,, + 0.001m — 0.001P,,,+ 0.004R, — 0.001h — 0.0002S
R%: 0.149; 0.212; 0.273; 0.372; 0.471; 0.498

0.01-0.04 kpuz= 0.016 + 0.013R; + 0.0001W + 0.001P,,; — 0.0003h — 0.0004S
R%: 0.204; 0.390; 0.475; 0.510; 0.532

0.0003—-0.01 kpuz= —0.002 + 0.018R;, + 0.0002P,,, + 0.00002W
R*0.569; 0.665; 0.697

Table 1. Multivariate regression models for different ranges of BHZ permeability. Note: P, . bottomhole pressure, MPa; P, —
reservoir pressure, MPa; P — saturation pressure, MPa; Q — liquid flow rate, m’/day;, h — effective thickness of the formation,
m; GOR — gas-oil ratio, m’/t; W —water cut, %, m — porosity, %; R, — specific well productivity, S — skin factor
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influence of features decreases with a decrease in the
permeability range.

The next step is to predict k,,, based on training
a fully connected neural network with different layer
configurations. Additional calculation parameters have
been added as additional features for training a fully
connected neural network:

P /P — ratio of bottomhole pressure to reservoir
pressure;

P _./P_ — ratio of bottomhole pressure to saturation
pressure.

To implement the algorithms, we used the open Keras
library, written in Python and providing interaction
with artificial neural networks (https://keras.io/). The
learning model is designed to stop at early epochs
(iterations) when the error on the validation data set stops
improving or begins to deteriorate to prevent overfitting
and optimize its generalization ability. This technique
is implemented by periodically computing the error on
the validation dataset after each training epoch. If the
error stops decreasing or begins to increase within a
given number of epochs, model training stops and the
best model obtained up to that point is returned. The
activation function ReLu on the output layer is a linear
activation function.

We tested architectures with different numbers of
layers (from 1 to 4) and number of neurons (50, 100, 150,
200). The best model with 4 layers of 100 neurons each
was selected. The model architecture and set of input data
for predicting BHZ permeability are presented in Fig. 3.

To predict the skin factor S, additional calculation
parameters have been added to the original database:

ky,," — median value of BHZ permeability of all
historical interpretation data for the well;

k, 7 — median value of RFZ permeability of all

RFZ
historical interpretation data for the well;

100 ueiiponor

100 neiiponos
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ky," ! ky.," — ratio of the median BHZ value to the
median RFZ value.

kg, — average value of BHZ permeability of all
historical interpretation data for the well;

kg, — average value of RFZ permeability of all
historical interpretation data for the well;

ki, ke, — ratio of the average BHZ value to the
average RFZ value.

The proposed methodology for estimating S consists
of preliminary prediction of the BHZ permeability
(Fig. 3) with subsequent adjustment of the median
value of the BHZ permeability of the well and, as a
consequence, the ratio of the median values of the
BHZ and RFZ permeabilities as one of the main initial
parameters for the skin forecasting neural network model
factor (Fig. 4).

Architectures with different numbers of layers
(from 1 to 4) and neurons (50, 100, 150, 200) were
tested. The best model with 4 layers of 100 neurons
each was selected, as for BHZ permeability. Dropout
layers have been added as an additional measure to
prevent overfitting. This technique randomly turns off
neurons in layers and improves generalization ability.
The architecture of the model and the set of initial data
for predicting the skin factor are presented in Fig. 4.

Figures 5 and 6 show scatterplots of skin factor and
permeability ratio; skin factor and the ratio of median
permeability values RFZ/BHZ for the entire operating
life for each well. When using median values, the R?

coefficient decreased from 0.834 to 0.425.

3. Results

A fully connected neural network was used to predict
BHZ permeability. Figures 7 and 8 show scatterplots of
the training and test samples. The average absolute error
on the test sample is 0.024 um?* with R* = 0.986.
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Fig. 3. Architecture of a fully connected neural network for predicting the permeability of the near-wellbore formation zone
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Fig. 4. Architecture of a fully connected neural network for skin factor prediction
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Fig. 5. Scatter diagram of the skin factor from the ratio of
permeability BHZ to RFZ

At the next stage, the dependence of the loss function
on the number of epochs for the skin factor model was
plotted, shown in Fig. 9.

Figure 9 shows that the neural network model for
predicting the skin factor can be trained, there is no
retraining. The average absolute error on the test sample
is 1.8 (R* = 0.644). The epoch of a neural network is
considered to be the passage of a complete set of data
through the neural network. During each epoch, the
system receives input data, passes through the layers,
calculates the error, and adjusts the weights using a
backpropagation algorithm. The neural network loss
function is used to measure the difference between the
predicted and actual values. The purpose of the loss
function is to minimize the error. In our case, the root
mean square error is used as a loss function. A fully
connected neural network was used to predict the skin
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Fig. 6. Scatter diagram of the skin factor versus the ratio of
the median permeability values of BHZ to RFZ
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Fig. 9. Learning curves of training and validation samples of
the skin factor model

factor. Figures 10 and 11 show scatterplots for the
training and validation sets.

The considered approaches and methods are the first
stage of creating a comprehensive system for assessing
the state of the bottomhole formation zone based on
significant field data (Big Data) obtained during the
development of oil and gas facilities.

The results of the obtained studies indicate a good
predictive ability of BHZ permeability based on well
productivity. Higher estimates of forecasting accuracy
were obtained using a fully connected artificial neural
network than using a multiple linear regression model.
The average absolute error on the test sample is 0.024
um?; for multiple linear regression it is 0.190 um?. The
coefficient of determination R? of the predicted and
actual values of BHZ permeability on the test sample
is 0.986.

A methodology for estimating the skin factor of a well
is proposed. Note that the accuracy of determining the
skin factor using this method depends on the uncertainty
of RFZ permeability, the quality of hydrodynamic data
and their interpretation. The neural network model for
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predicting the skin factor can be trained, there is no
retraining. The average absolute error on the test set is
1.8. The coefficient of determination R? of the predicted
and actual values of the skin factor is 0.644, for multiple
linear regression it is 0.427.

4. Conclusion

The paper proposes a methodology for rapid
assessment of the state of the BHZ based on historical
data from the development of the object: geological
and operational information, as well as the results of
interpretation of hydrodynamic studies. Based on these
data, the following artificial neural network models
were built to predict the parameters of the bottomhole
formation zone:

1) BHZ permeability prediction model based on
neural network training: the average absolute error on the
test sample is 0.024 um?, for multiple linear regression
it is 0.190 um?; the coefficient of determination R* of
the predicted and actual values of BHZ permeability on
the test sample is 0.986.
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2) skin factor prediction model based on neural
network training: the average absolute error on the test
sample is 1.8; the coefficient of determination R? of the
predicted and actual values of the skin factor is 0.644,
for multiple linear regression it is 0.427.

BHZ permeability is determined quite accurately
based on well productivity characteristics. The approach
proposed in the work for determining the skin factor is
complicated by the accuracy of well test interpretation.
In future studies, it is planned to use recurrent and
convolutional neural networks to study the dynamic
components of the formation of the bottomhole
formation zone and create an integrated approach to
solve the problem.
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HpOFHO3I/Ip0BaHI/le IT'MAPOANHAMUYECCKHUX MMapaMEeTPOB COCTOSITHUSA l'[pH3360ﬁHOﬁ
30HbI CKBa’KHH C IIOMOILIIBIO METOA0B MAIIIMHHOI'O oﬁyqunﬂ

A.B. Copomomun’, J.A. Mapmwowes®”, A.A. Menexun’

1000 «JIVKOUI-Hnscunupuney «epnHUIIHnedmuv» 6 2. Ilepuu, Poccus

2 [lepmcKuil HAYUOHATLHBLLL UCCLEO08AMENbCKULL NOTUMeXHUYecKull yhusepcumem, Iepmo, Poccust

AKTyanbHOCTh pa3pabOTKU METOAMKH ONEpaTHBHON
OLICHKH MPU3a00WHON 30HBI TIacTa (MPOHUIIAEMOCTH MPH-
3a00IiHOM 30HBI MJacTa U CKUH-(paKTopa) oOyclIOBlieHA B
HEPBYIO OYepe/ib IKOHOMUUECKUMU IPUUUHAMHE, TTOCKOJIBKY
CYIIECTBYIOIME MOAXO/BI K €€ OMpPEeeICHHI0, OCHOBAHHBIE
Ha MMPOBEJCHUH THIIPOJMHAMHYECKUX MCCIIEIOBAHUMN, BEAYT
K HeoOopaM He()TH U TIOBBIIICHHIO PHCKOB HEOOCCIICUCHUS
BBIBOJIA CKBaKMHBI Ha pexnuM. COBpeMEHHbIE METO/IbI Pado-
TBI C OOJIBIIMMU JIAHHBIMH, HAlpUMeEp NIyOoKoe o0yueHne
UCKYCCTBEHHBIX HEHPOHHBIX CETEH, IO3BOJSAIOT OCYLIECT-
BJISAITh KOHTPOJIb 32 COCTOSIHUEM MPU3a00HHOMN 30HBI IJ1acTa
(TT3IT) ckBaxkuH 0€3 X OCTAHOBKH Ha TUAPOJTUHAMUYECKUE
UCCJIEJI0BAHMS, YTO COKPATHT YOBITKH y HpPEANPHUSATHIA,
OCYUICCTBISIIOLIMX NOOBIYYy HE()TH, C OAHON CTOPOHBI, U
MO3BOJIMT MPOBOJUTH ONEPATHBHBIN aHaIM3 It dPPEKTUB-
HOTO M CBOEBPEMEHHOTO MPUMEHEHHs] TEXHOJIOTHI WHTEH-
cU]UKaIK, MOBBINICHNUST HEPTEOTAAYN TUIACTa, C APYTOM.
B pabote mpoaHann3upoBaHbl CyIIECTBYIOLIME METOABI 10
OITPE/ICIICHHIO MTPHU3a00IHBIX XapaKTEPUCTHK IACTa U TIO/I-
XOJIOB MalIMHHOTO 00yueHwus. [Ipemiokena MeToauka st
OIlepaTHBHOMN OLICHKHU COCTOSTHMSI TIPH3a00HOMN 30HbI I1J1acTa:
nponunaemoctu [1311 u ckuH-pakTOpa — C MOMOIIBIO 00yYe-

HUSI UICKYCCTBEHHBIX HEMPOHHBIX CETEH HA I€0JOTMYECKUX U
SKCIULyaTallMOHHBIX JaHHBIX U pe3yJbTaTax UHTEPIpPETaluu
TUAPOJUHAMUYECKUX UCCIICJOBAHUN HA IPUMEPE TEPPUTEH-
HBIX 00BEKTOB He(PTIHBIX MecTopoxkaeHuil. [IpencraBieHb
pe3yJbTarhbl TECTUPOBAHUS PA3JINYHBIX APXUTEKTYP HEUPOH-
HBIX ceTed JUIsl mporHo3upoBaHus mponuraemoctu I13I1:
KOJIMYECTBA CIIOEB U HEMPOHOB B HUX C BBIOOPOM HaMITyUIIICH.
Hcrnonb30BaHbl TEXHUYECKUE IPUEMBI JUIs IPEAOTBPALLIEHUS
nepeoOydeHus mozeneit. [Ipemiokera aBTopckasi METOIMKA
I10 OIIEHKE CKUH-()aKTOpa CKBaKUH C TIOMOIIBIO KOMILIEKC-
HOI'O aHAJIN3a MOCTPOCHHBIX CTATUCTUUYECKUX MOAECIECH U
Moziesiel 00y4eHHsI UCKYCCTBEHHBIX HEHPOHHBIX CeTeil st
peLIeHUs] 3a1a4l PErPECCUM.

KioueBble c10Ba: TeppUTreHHBIN KOJUIEKTOP, MPU3a00ii-
Hasl 30Ha IJ1acTa, IPOHUI[AEMOCTh, CKUH-(DaKTOp, MallIMHHOE
o0yueHue, HelpOHHas CeTh
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