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The relevance of the development of a methodology for the operational assessment of the bottom-hole 
formation zone (the permeability of the bottom-hole formation zone and the skin factor) is primarily due to 
economic considerations, since existing approaches to its definition based on hydrodynamic studies lead to 
shortages and increased risks of failure to ensure the output of the well. In this regard, the use of modern 
methods of working with big data, such as deep learning of artificial neural networks, will ensure monitoring 
of the condition of the bottom-hole zone of the well formation without stopping them for hydrodynamic tests, 
which will reduce losses for oil production enterprises. It will allow for operational analysis for effective and 
timely application of intensification technologies, enhanced oil recovery. The authors analyzed the existing 
methods for determining the bottom-hole characteristics of the formation and machine learning approaches 
in the direction of solving this problem. The article presents a methodology for the operational assessment 
of the state of the bottom-hole formation zone: the permeability of the near bottomhole zone (NBHZ) and 
the skin factor using artificial neural network training approaches based on geological, operational data 
and the results of interpretation of hydrodynamic studies on the example of sandstones of oil fields in the 
Perm Region. A fully connected neural network was used to predict the NBHZ permeability. The article 
presents the results of testing various neural network architectures: the number of layers and neurons in 
layers with the choice of the best one. Some techniques were used to prevent over-training of models. The 
author’s methodology for assessing the skin factor of wells is proposed using a comprehensive analysis of 
the constructed statistical models and training models of artificial neural networks to solve the regression 
problem. In future studies, it is planned to use recurrent and convolutional neural networks to study the 
dynamic components of the formation of the bottom-hole formation zone and create an integrated approach 
to solve the problem.
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1. introduction
A significant portion of the remaining resources of 

oil and gas fields are concentrated in complex reservoirs, 
the permeability and porosity of which are generally low 
or ultra-low (Kantaatmadja et al., 2019; Alghazal et al., 
2020; He et al., 2022), which causes additional filtration 
resistance when filtering hydrocarbons. The state of 
the bottomhole formation zone (BHZ) in reservoirs 
of this type plays an important role in the movement 
of fluids from the formation to the well. In this work, 

we will consider such parameters as the permeability 
of the reservoir zone and the skin factor, on which the 
productivity of production and injectivity of injection 
wells, the success of stimulation methods and methods 
of increasing oil recovery depend (Byrne, Mcphee, 2012; 
Gouda, Attia, 2022).

In real formation conditions, deterioration of the 
condition of the bottomhole zone of a well can be caused 
by exposure to clay mud when drilling a productive 
formation, flushing of the bottomhole with various 
process fluids (water, acid, steam, etc.), clogging of 
formation voids with reaction products, deposition 
of organic substances, etc. (Al-Obaidi, 2016; Yang 
et al., 2023; Dvoynikov et al., 2024). Today, various 
approaches are known that allow one to evaluate and 
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predict the skin factor in various geological and physical 
conditions. For example, the mathematical model of the 
skin factor presented in (Mahmoudi et al., 2016) takes 
into account formation damage and flow convergence. 
The work (Xie, 2015) performed a finite element analysis 
and studied the influence of the length of the slot holes 
and their structure on the filtration of fluid flow, as well 
as on the skin factor. The authors (Sivagnanam et al., 
2017) in their work used cFD (computational Fluid 
Dynamics) – a k–ε-model of turbulence, built on the 
basis of a modified Darcy’s law, which takes into account 
inertial effects. Studies (Dong et al., 2018; Abobaker 
et al., 2021) proposed mathematical models of the 
skin factor of inclined wells in anisotropic reservoirs. 
Most models based on optimization of the Hawkins 
skin factor equation consider the radius of the damage 
zone in the direction from the “toe” to the “root” of the 
wellbore as a constant, linear and parabolic distribution. 
The work (Wang et al., 2023) optimized the skin factor 
model, assuming that the distribution of the damage 
zone along the horizontal wellbore has a parabolic 
decreasing shape. As the cement content increases, the 
rock can gradually turn into chemogenic rock, which 
can worsen the permeability properties of the reservoir 
and gradually turn it into unproductive rock, since 
this creates a surface layer in the wellbore zone (Al-
Obaidi, Khalaf, 2018; Abdulaziz et al., 2022). The work 
(Khairullin et al., 2016) considers an approach based on 
the simultaneous use of data on changes in pressure and 
temperature at the bottom of the well with subsequent 
quantitative assessment of formation parameters and 
skin factor values. The authors (Kubota, Gioria, 2022; 
Gomaa et al., 2022) proposed an original solution for 
using regression models based on retrospective values   
of bottomhole pressure and fluid production to estimate 
the skin factor during well shutdowns for research. In 
these works, using various approaches, the influence 
of geological and technological parameters on the skin 
factor was studied, the determination of which is of 
fundamental importance for assessing the success of 
intensification measures.

Permeability prediction is one of the current 
researches in oil and gas industry (Zhou et al., 2024; 
Wang et al., 2024). To date, there is a small amount 
of published work on the application of machine 
learning methods to solve the problem of uncertainty 
in predicting BHZ permeability (Bennis, Torres-Verdín, 
2019; Eriavbe, Okene, 2019; Singh et al., 2020; Bennis, 
Torres-Verdín, 2023; Rashid et al., 2023; Pei et al., 
2024). The most adapted and frequently used method 
of artificial intelligence (AI) technologies for predicting 
reservoir properties based on well logging data are neural 

networks and fuzzy logic (Dong et al., 2023). These 
methods estimate and predict reservoir parameters more 
accurately and reliably compared to traditional methods 
(Matinkia et al., 2023). However, the use of machine 
learning algorithms to interpret geophysical survey 
data to obtain reservoir characteristics is complicated 
by problems of subjectivity of interpretation (Negara et 
al., 2016; Aygun et al., 2023; Liu et al., 2023). Artificial 
intelligence is used to predict permeability using the 
calculated HFU (Hydraulic Flow Units) parameter 
(Bahaloo et al., 2023). The results show that AI with 
HFU gives a good estimate of permeability (Alobaidi, 
2016). In a study by (Hameed, Hamd-Allah, 2023), 
permeability predicted by an AI model more accurately 
described the well’s operating history. In (Liu et al., 
2020; Zakharov et al., 2022), the feasibility and accuracy 
of automated interpretation of pressure build-up curves 
to determine near-wellbore reservoir characteristics 
using a convolutional neural network was assessed. It 
has also been noted that permeability calculations using 
reservoir simulation methods are greatly affected by 
uncertainty in the interpretation of reservoir thickness 
(Bist et al., 2023; Li et al., 2023).

Assessing and predicting the permeability of the 
bottomhole zone of wells and the skin factor are a 
primary task, the solution of which will allow a more 
reasonable approach to the selection of technological 
operating modes, methods for intensifying well 
production and increasing oil recovery. However, at 
present, little attention is paid to this; to make various 
kinds of decisions, the permeability of the remote zone 
of the formation (RFZ), which is determined according to 
the data of hydrodynamic testing of wells (well testing), 
is used to make various kinds of decisions.

The purpose of this article is to improve and adapt 
machine learning methods based on historical data from 
the development of hydrocarbon fields to assess and 
predict such parameters of the state of the near-wellbore 
formation zone as skin factor and BHZ permeability.

2. Materials and methods
Data from 486 hydrodynamic studies of production 

wells were used (real names of fields and well locations 
are not indicated due to the confidentiality of this 
information), processed in the KAPPA Workstation 
software product (Saphir module) with determination 
of the skin factor (S) and RFZ permeability (kRFZ). 39 
indicator diagrams with determination of the skin factor 
and permeability of the near-wellbore formation zone 
(kBHZ) were interpreted.

The following parameters were used to predict kBHZ 
values:



www.geors.ru GEORESURSY 111

GEORESURSY = GEORESOURcES                   2024. V. 26. Is. 1. Pp. 109–117

Pwf – bottomhole pressure of well flowing, MPa;
Pres – reservoir pressure, MPa;
Psat – saturation pressure of oil with gas, MPa;
Q – liquid flow rate, m3/day;
h – effective thickness of the formation, m;
GOR – gas-oil ratio, m3/t;
W – water cut, %;
m – porosity, %;

, – calculated coefficient 

of specific well productivity to improve the accuracy of 
the model;

S – skin factor.
To establish individual patterns of formation of the 

permeability of the bottom-hole zone of the formation 
(phase for oil), a sample was used, previously ranked by 
permeability kBHZ from maximum to minimum values. 
After ranking, a stepwise modeling procedure was 
performed using multiple linear regression. This process 
is described in detail in (Galkin et al., 2021; Ponomareva 
et al., 2022), so this article outlines only its main stages. 
At the first stage, a model is built using the first three 
rows of the table with a data sample (n = 3), then the 
second model with a data sample (n = 4), etc.

Fig. 1 shows that a sharp decrease in the multiple 
correlation coefficient (R2) occurs when the BHZ 
permeability is less than 1 μm2. Despite the relatively 
large R2 value on the full data set (0.812), the model has 
a large standard error of the mean – 0.191 µm2. 

Models built for different BHZ permeability ranges 
are presented in Fig. 2 and in Table 1. Statistical 
performance characteristics are also calculated for each 
model. According to the analysis of the coefficients 
of determination, the accuracy of the models and the 

Fig. 1. Multiple correlation coefficient (R2) at different BHZ 
permeability ranges
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Fig. 2. Scatterplot of predicted and actual BHZ permeability 
values   (ranking by BHZ permeability)
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0,0003-0,01 Д 0,01-0,04 Д
0,042-0,065 Д 0,066-0,39 Д
0,39-1,06 Д 1,1-4,5 Д

Table 1. Multivariate regression models for different ranges of BHZ permeability. Note: Pwf – bottomhole pressure, MPa; Pres – 
reservoir pressure, MPa; Psat – saturation pressure, MPa; Q – liquid flow rate, m3/day; h – effective thickness of the formation, 
m; GOR – gas-oil ratio, m3/t; W – water cut, %; m – porosity, %; Rk – specific well productivity; S – skin factor

1.1 4.5 
BHZ permeability range, μm2  ledo mnoissergeR 

0.39 1.06 

kBHZ Pres Psat заб

R2: 0.429; 0.767; 0.961; 0.971; 0.986; 0.989; 0.989; 0.995; 0.998; 0.999 

0.066 0.39 

kBHZ Psat Pres Pwf

R2: 0.268; 0.372; 0.377; 0.417; 0.435; 0.519; 0.697; 0.702; 0.795; 0.797 

0.042 0.065 

kBHZ = Psat Pres  
0.009Pwf  
R2: 0.365; 0.436; 0.441; 0.457; 0.469; 0.475; 0.488; 0.504; 0.507 

0.01 0.04 

kBHZ Psat Pwf
R2: 0.149; 0.212; 0.273; 0.372; 0.471; 0.498 

0.0003 0.01 

kBHZ Pres
R2: 0.204; 0.390; 0.475; 0.510; 0.532 
kBHZ Pres
R2: 0.569; 0.665; 0.697 
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Fig. 3. Architecture of a fully connected neural network for predicting the permeability of the near-wellbore formation zone

influence of features decreases with a decrease in the 
permeability range.

The next step is to predict kBHZ based on training 
a fully connected neural network with different layer 
configurations. Additional calculation parameters have 
been added as additional features for training a fully 
connected neural network:

Рwf /Рres – ratio of bottomhole pressure to reservoir 
pressure;

Рwf /Рsat – ratio of bottomhole pressure to saturation 
pressure.

To implement the algorithms, we used the open Keras 
library, written in Python and providing interaction 
with artificial neural networks (https://keras.io/). The 
learning model is designed to stop at early epochs 
(iterations) when the error on the validation data set stops 
improving or begins to deteriorate to prevent overfitting 
and optimize its generalization ability. This technique 
is implemented by periodically computing the error on 
the validation dataset after each training epoch. If the 
error stops decreasing or begins to increase within a 
given number of epochs, model training stops and the 
best model obtained up to that point is returned. The 
activation function ReLu on the output layer is a linear 
activation function.

We tested architectures with different numbers of 
layers (from 1 to 4) and number of neurons (50, 100, 150, 
200). The best model with 4 layers of 100 neurons each 
was selected. The model architecture and set of input data 
for predicting BHZ permeability are presented in Fig. 3.

To predict the skin factor S, additional calculation 
parameters have been added to the original database:

kBHZ
T – median value of BHZ permeability of all 

historical interpretation data for the well;
kRFZ

T – median value of RFZ permeability of all 
historical interpretation data for the well;

kBHZ
T / kRFZ

T – ratio of the median BHZ value to the 
median RFZ value.

kBHZ
av – average value of BHZ permeability of all 

historical interpretation data for the well;
kRFZ

av  – average value of RFZ permeability of all 
historical interpretation data for the well;

kBHZ
av / kRFZ

av – ratio of the average BHZ value to the 
average RFZ value.

The proposed methodology for estimating S consists 
of preliminary prediction of the BHZ permeability 
(Fig. 3) with subsequent adjustment of the median 
value of the BHZ permeability of the well and, as a 
consequence, the ratio of the median values   of the 
BHZ and RFZ permeabilities as one of the main initial 
parameters for the skin forecasting neural network model 
factor (Fig. 4).

Architectures with different numbers of layers 
(from 1 to 4) and neurons (50, 100, 150, 200) were 
tested. The best model with 4 layers of 100 neurons 
each was selected, as for BHZ permeability. Dropout 
layers have been added as an additional measure to 
prevent overfitting. This technique randomly turns off 
neurons in layers and improves generalization ability. 
The architecture of the model and the set of initial data 
for predicting the skin factor are presented in Fig. 4.

Figures 5 and 6 show scatterplots of skin factor and 
permeability ratio; skin factor and the ratio of median 
permeability values   RFZ/BHZ for the entire operating 
life for each well. When using median values, the R2 
coefficient decreased from 0.834 to 0.425.

3. Results
A fully connected neural network was used to predict 

BHZ permeability. Figures 7 and 8 show scatterplots of 
the training and test samples. The average absolute error 
on the test sample is 0.024 µm2 with R2 = 0.986.
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At the next stage, the dependence of the loss function 
on the number of epochs for the skin factor model was 
plotted, shown in Fig. 9.

Figure 9 shows that the neural network model for 
predicting the skin factor can be trained, there is no 
retraining. The average absolute error on the test sample 
is 1.8 (R2 = 0.644). The epoch of a neural network is 
considered to be the passage of a complete set of data 
through the neural network. During each epoch, the 
system receives input data, passes through the layers, 
calculates the error, and adjusts the weights using a 
backpropagation algorithm. The neural network loss 
function is used to measure the difference between the 
predicted and actual values. The purpose of the loss 
function is to minimize the error. In our case, the root 
mean square error is used as a loss function. A fully 
connected neural network was used to predict the skin 

Fig. 5. Scatter diagram of the skin factor from the ratio of 
permeability BHZ to RFZ
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Fig. 6. Scatter diagram of the skin factor versus the ratio of 
the median permeability values   of BHZ to RFZ
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Fig. 4. Architecture of a fully connected neural network for skin factor prediction

Fig. 7. Scatterplots of BHZ permeability on training and 
validation samples
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factor. Figures 10 and 11 show scatterplots for the 
training and validation sets.

The considered approaches and methods are the first 
stage of creating a comprehensive system for assessing 
the state of the bottomhole formation zone based on 
significant field data (Big Data) obtained during the 
development of oil and gas facilities.

The results of the obtained studies indicate a good 
predictive ability of BHZ permeability based on well 
productivity. Higher estimates of forecasting accuracy 
were obtained using a fully connected artificial neural 
network than using a multiple linear regression model. 
The average absolute error on the test sample is 0.024 
µm2; for multiple linear regression it is 0.190 µm2. The 
coefficient of determination R2 of the predicted and 
actual values   of BHZ permeability on the test sample 
is 0.986.

A methodology for estimating the skin factor of a well 
is proposed. Note that the accuracy of determining the 
skin factor using this method depends on the uncertainty 
of RFZ permeability, the quality of hydrodynamic data 
and their interpretation. The neural network model for 

predicting the skin factor can be trained, there is no 
retraining. The average absolute error on the test set is 
1.8. The coefficient of determination R2 of the predicted 
and actual values   of the skin factor is 0.644, for multiple 
linear regression it is 0.427.

4. conclusion
The paper proposes a methodology for rapid 

assessment of the state of the BHZ based on historical 
data from the development of the object: geological 
and operational information, as well as the results of 
interpretation of hydrodynamic studies. Based on these 
data, the following artificial neural network models 
were built to predict the parameters of the bottomhole 
formation zone:

1) BHZ permeability prediction model based on 
neural network training: the average absolute error on the 
test sample is 0.024 µm2, for multiple linear regression 
it is 0.190 µm2; the coefficient of determination R2 of 
the predicted and actual values   of BHZ permeability on 
the test sample is 0.986.

Fig. 9. Learning curves of training and validation samples of 
the skin factor model

Fig. 10. Scatter diagrams of the skin factor on training and 
validation samples

Fig. 11. Scatter diagram of the skin factor on the test sample

Fig. 8. Scatterplot of BHZ permeability on test sample
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2) skin factor prediction model based on neural 
network training: the average absolute error on the test 
sample is 1.8; the coefficient of determination R2 of the 
predicted and actual values   of the skin factor is 0.644, 
for multiple linear regression it is 0.427.

BHZ permeability is determined quite accurately 
based on well productivity characteristics. The approach 
proposed in the work for determining the skin factor is 
complicated by the accuracy of well test interpretation. 
In future studies, it is planned to use recurrent and 
convolutional neural networks to study the dynamic 
components of the formation of the bottomhole 
formation zone and create an integrated approach to 
solve the problem.

acknowledgements
This work was supported by the Ministry of Science 

and Higher Education of the Russian Federation (Project 
No. FSNM-2024-0005).

References
Abdulaziz A.M., Ali M.K., Hafad O.F. (2022). Influences of Well Test 

Techniques and Uncertainty in Petrophysics on Well Test Results. Energies, 
15(19), 7414. https://doi.org/10.3390/en15197414

Abobaker E., Elsanoose A., Khan F., Rahman M.A., Aborig A., Noah K. 
(2021). A New Evaluation of Skin Factor in Inclined Wells with Anisotropic 
Permeability. Energies, 14(17), 5585. https://doi.org/10.3390/en14175585

Alghazal M., Alshakhs M., Bouaouaja M. (2020). Technology integration 
to assessend-point oil saturation of the relative permeability curves. 
International Petroleum Technology Conference. Dhahran, Kingdom of Saudi 
Arabia. https://doi.org/10.2523/iptc-19614-ms

Alobaidi D.A. (2016). Permeability prediction in one of iraqi carbonate 
reservoir using hydraulic flow units and neural networks. Iraqi Journal 
of Chemical and Petroleum Engineering, 17(1), pp. 1–11. https://doi.
org/10.31699/IJcPE.2016.1.1

Al-Obaidi S.H. (2016). Improve The Efficiency Of The Study Of 
complex Reservoirs And Hydrocarbon Deposits-East Baghdad Field. 
International Journal of Scientific & Technology Research, 5(8), pp. 129–131.

Al-Obaidi S.H., Khalaf F.H. (2018). The Effects Of Hydro Confining 
Pressure On The Flow Properties Of Sandstone And carbonate 
Rocks. Journal of Geology & Geophysics, 7(2), 327. https://doi.
org/10.4172/2381-8719.1000327 

Aygun A., Maulik R., Karakus A. (2023). Physics-informed neural 
networks for mesh deformation with exact boundary enforcement. 
Engineering Applications of Artificial Intelligence, 125, 106660. https://doi.
org/10.1016/j.engappai.2023.106660

Bahaloo S., Mehrizadeh M., Najafi-Marghmaleki A. (2023). Review 
of application of artificial intelligence techniques in petroleum operations. 
Petroleum Research, 8(2), pp. 167–182. https://doi.org/10.1016/j.
ptlrs.2022.07.002

Bennis M., Torres-Verdín c. (2019). Estimation of Dynamic 
Petrophysical Properties from Multiple Well Logs Using Machine Learning 
and Unsupervised Rock classification. SPWLA 60th Annual Logging 
Symposium. The Woodlands, Texas, USA, SPWLA-2019-KKKK. https://
doi.org/10.30632/T60ALS-2019_KKKK

Bennis M., Torres-Verdín c. (2023). Automatic Multiwell Assessment of 
Flow-Related Petrophysical Properties of Tight Gas Sandstones Based on The 
Physics of Mud-Filtrate Invasion. SPE Reservoir Evaluation and Engineering, 
26(3), pp. 543–564. https://doi.org/10.2118/214668-PA

Bist N., Nair A., Yadav K., Sircar A. (2023). Diverting agents in the 
oil and gas industry: A comprehensive analysis of their origins, types, and 
applications. Petroleum Research. https://doi.org/10.1016/j.ptlrs.2023.09.004

Dong S.-Q., Zhong Z.-H., cui X.-H., Zeng L.-B., Yang X., Liu J.-
J., Sun Y.-M., Hao J.-R. (2023). A deep kernel method for lithofacies 
identification using conventional well log. Petroleum Science, 20(3), 

pp. 1411–1428. https://doi.org/10.1016/j.petsci.2022.11.027
Dong W., Wang X., Wang J. (2018). A new skin factor model for 

partially penetrated directionally-drilled wells in anisotropic reservoirs. 
Journal of Petroleum Science and Engineering, 161, pp. 334–348. https://
doi.org/10.1016/j.petrol.2017.11.062

Dvoynikov M.V., Minaev Ya.D., Minibaev V.V., Kambulov E.Yu., 
Lamosov M.E. (2024). Technology for killing gas wells at managed pressure. 
Bulletin of the Tomsk Polytechnic University.  Geo Assets Engineering, 335(1), 
pp. 7–18. https://doi.org/10.18799/24131830/2024/1/4315

Eriavbe F.E., Okene U.O. (2019). Machine Learning Application to 
Permeability Prediction Using Log & core Measurements: A Realistic 
Workflow Application for Reservoir Characterization. SPE Nigeria Annual 
International Conference and Exhibition, Lagos, Nigeria, SPE-198874-MS. 
https://doi.org/10.2118/198874-MS

Galkin V.I., Martyushev D.A., Ponomareva I.N., chernykh I.A. (2021). 
Developing features of the near-bottomhole zones in productive formations 
at fields with high gas saturation of formation oil. Journal of Mining Institute, 
249, pp. 386–392. https://doi.org/10.31897/PMI.2021.3.7

Gomaa S., Emara R., Mahmoud O., El-hoshoudy A.N. (2022). New 
correlations to calculate vertical sweep efficiency in oil reservoirs using 
nonlinear multiple regression and artificial neural network. Journal of 
King Saud University – Engineering Sciences, 34(7), 368–375. https://doi.
org/10.1016/j.jksues.2021.07.010

Gouda A., Attia A.M. (2022). Development of a new approach using 
an artificial neural network for estimating oil formation volume factor 
at bubble point pressure of Egyptian crude oil. Journal of King Saud 
University – Engineering Sciences, 36(1), pp. 72–80. https://doi.org/10.1016/j.
jksues.2022.08.001

Hameed M.R.A., Hamd-Allah S.M. (2023). Studying the Effect of 
Permeability Prediction on Reservoir History Matching by Using Artificial 
Intelligence and Flow Zone Indicator Methods. Iraqi Geological Journal, 
56(1E), pp. 9–21. https://doi.org/10.46717/igj.56.1E.2ms-2023-5-12

He Y., Liu Y., cai H. (2022). Fine characterisation of remaining oil using 
timevarying numerical simulation: Experimental study. characterisation in 
Model, and Application in QHD Oilfield. Offshore Technology Conference 
Asia. Virtual and Kuala Lumpur, Malaysia, OTc-31410-MS. https://doi.
org/10.4043/31410-ms

Kantaatmadja B.P., Jiang L., Ralphie B. (2019). Hydrocarbon 
identification and evaluation in a bioturbated reservoir with new-
generation pulsed neutron technology. SPE/IATMI Asia Pacific Oil & Gas 
Conference and Exhibition. Bali, Indonesia, SPE-196364-MS. https://doi.
org/10.2118/196364-ms

Khairullin M.K., Shamsiev, M.N., Gadilshina, B.R., Morozov, P. E., 
Abdullin, A. I., Badertdinova, E.R. (2016). Determination of the Parameters of 
the Hole Bottom Zone of a Vertical Well from the Results of Thermodynamic 
Investigations. Journal of Engineering Physics and Thermophysics, 89(6), 
pp. 1449–1453. https://doi.org/10.1007/s10891-016-1512-7

Kubota L., Gioria R.S. (2022). Data-driven technique estimates 
skin factor and average pressure during oil-flowing periods. Journal of 
Petroleum Science and Engineering, 219, 111061. https://doi.org/10.1016/j.
petrol.2022.111061

Li D., Zhou X., Xu Y., Wan Y., Zha W. (2023). Deep learning-based 
analysis of the main controlling factors of different gas-fields recovery rate. 
Energy, 285, 128767. https://doi.org/10.1016/j.energy.2023.128767

Liu S., Fan M., Lu D. (2023). Uncertainty quantification of the 
convolutional neural networks on permeability estimation from micro-cT 
scanned sandstone and carbonate rock image. Geoenergy Science and 
Engineering, 230, 212160. https://doi.org/10.1016/j.geoen.2023.212160

Liu X., Li D., Yang J., Zha W., Zhou Z., Gao L., Han J. (2020). Automatic 
well test interpretation based on convolutional neural network for infinite 
reservoir. Journal of Petroleum Science and Engineering, 195, 107618. 
https://doi.org/10.1016/j.petrol.2020.107618

Mahmoudi M., Fattahpour V., Nouri A., Yao T., Baudet B.A., Leitch M., 
Fermaniuk B. (2016). New criteria for Slotted Liner Design for Heavy Oil 
Thermal Production. SPE Thermal Well Integrity and Design Symposium, 
Banff, Alberta, canada, SPE-182511-MS. https://doi.org/10.2118/182511-MS

Matinkia M., Hashami R., Mehrad M., Hajsaeedi M. R., Velayati A. 
(2023). Prediction of permeability from well logs using a new hybrid machine 
learning algorithm. Petroleum, 9(1), pp. 108–123. https://doi.org/10.1016/j.
petlm.2022.03.003

Negara A., Jin G., Agrawal G. (2016). Enhancing Rock Property 
Prediction from conventional Well Logs Using Machine Learning Technique-
case Studies of conventional and Unconventional Reservoirs. The Abu 



Prediction of Hydrodynamic Parameters of the State...                                                                                       A.V. Soromotin, D.A. Martyushev, A.A. Melekhin

GEORESURSY   www.geors.ru116

Dhabi International Petroleum Exhibition & Conference, Abu Dhabi, UAE, 
SPE-183106-MS. https://doi.org/10.2118/183106-MS

Pei X., Liu Y., Lin Z., Fan P., Mi L., Xue L. (2024). Anisotropic dynamic 
permeability model for porous media. Petroleum Exploration and Development, 
51(1), pp. 193-202. https://doi.org/10.1016/S1876-3804(24)60016-9

Ponomareva I.N., Martyushev D.A., Govindarajan S.K. (2022). A new 
approach to predict the formation pressure using multiple regression analysis: 
Case study from Sukharev oil field reservoir – Russia. Journal of King 
University – Engineering Sciences. https://doi.org/10.1016/j.jksues.2022.03.005

Rashid M., Luo M., Ashraf U., Hussain W., Ali N., Rahman N., Hussain 
S., Martyushev D.A., Vo Thanh H., Anees A. (2023). Reservoir Quality 
Prediction of Gas-Bearing carbonate Sediments in the Qadirpur Field: 
Insights from Advanced Machine Learning Approaches of SOM and cluster 
Analysis. Minerals, 13(1), 29. https://doi.org/10.3390/min13010029

Singh M., Makarychev G., Mustapha H., Voleti D., Akkurt R., 
Daghar Kh.A., Mawlod A.A., Marzouqi Kh.A., Shehab S., Maarouf A., 
Jundi O.E., Razouki A. (2020). Machine Learning Assisted Petrophysical Logs 
Quality control, Editing and Reconstruction. The Abu Dhabi International 
Petroleum Exhibition & Conference, Abu Dhabi, UAE, SPE-202977-MS. 
https://doi.org/10.2118/202977-MS

Sivagnanam M., Wang J., Gates I.D. (2017). On the fluid mechanics of 
slotted liners in horizontal wells. Chemical Engineering Science, 164, pp. 
23–33. https://doi.org/10.1016/j.ces.2017.01.070

Wang c.-c., Yang Y.-F., Han D.-L., Su M.-M., Hu R.-R. (2023). 
Influence of matrix physical properties on flow characteristics in dual network 
model. Petroleum Science, 20(4), pp. 2244–2252. https://doi.org/10.1016/j.
petsci.2023.06.006

Wang S., Xiang J., Wang X., Feng Q., Yang Y., cao X., Hou L. (2024). 
A deep learning based surrogate model for reservoir dynamic performance 
prediction. Geoenergy Science and Engineering, 233, 212516. https://doi.
org/10.1016/j.geoen.2023.212516

Xie J. (2015). Slotted Liner Design Optimization for Sand control in 
SAGD Wells. SPE Thermal Well Integrity and Design Symposium, Alberta, 
canada, SPE-178457-MS. https://doi.org/10.2118/178457-MS

Yang Y., Horne R.N., Cai J., Yao J. (2023). Recent advances on fluid flow 
in porous media using digital core analysis technology. Advances in Geo-
Energy Research, 9(2), pp. 71–75. https://doi.org/10.46690/ager.2023.08.01

Zakharov L.А., Martyushev D.А., Ponomareva I.N. (2022). Predicting 
dynamic formation pressure using artificial intelligence methods. Journal 
of Mining Institute, 253, pp. 23–32. https://doi.org/10.31897/PMI.2022.11

Zhou X., Wei J., Zhao J., Zhang X., Fu X., Sultanov Sh., Gayubov A., 
chen Y., Wang J. (2024). Study on pore structure and permeability sensitivity 
of tight oil reservoir. Energy, 288, 129632. https://doi.org/10.1016/j.
energy.2023.129632

about the authors
Andrey V. Soromotin – Engineer of the Depertment 

of Design and Monitoring of North group of fields, LLC 
“LUKOIL-Engineering” “PermNIPIneft” in Perm

3a, Permskaya st., Perm, 614015, Russian Federation
e-mail: s@soromotinav.ru

Dmitriy A. Martyushev – Dr. Sci. (Technical 
Sciences), Assistant Professor, Department of Oil and 
Gas Technologies, Perm National Research Polytechnic 
University 

29, Komsomolskiy av., Perm, 614990, Russian 
Federation

e-mail: martyushevd@inbox.ru

Alexander A. Melekhin – cand. Sci. (Technical 
Sciences), Assistant Professor, Department of Oil and 
Gas Technologies, Perm National Research Polytechnic 
University 

29, Komsomolskiy av., Perm, 614990, Russian 
Federation

e-mail: melehin.sasha@mail.ru

Manuscript received 3 October 2023; 
Accepted 6 February 2024; 

Published 30 March 2024



www.geors.ru GEORESURSY 117

GEORESURSY = GEORESOURcES                   2024. V. 26. Is. 1. Pp. 109–117

Прогнозирование гидродинамических параметров состояния призабойной 
зоны скважин с помощью методов машинного обучения 

А.В. Соромотин1, Д.А. Мартюшев2*, А.А. Мелехин2
1 ООО «ЛУКОЙЛ-Инжиниринг» «ПермНИПИнефть» в г. Перми, Россия
2 Пермский национальный исследовательский политехнический университет, Пермь, Россия

in RUSSian

Актуальность разработки методики оперативной 
оценки призабойной зоны пласта (проницаемости при-
забойной зоны пласта и скин-фактора) обусловлена в 
первую очередь экономическими причинами, поскольку 
существующие подходы к ее определению, основанные 
на проведении гидродинамических исследований, ведут 
к недоборам нефти и повышению рисков необеспечения 
вывода скважины на режим. Современные методы рабо-
ты с большими данными, например глубокое обучение 
искусственных нейронных сетей, позволяют осущест-
влять  контроль за состоянием призабойной зоны пласта 
(ПЗП) скважин без их остановки на гидродинамические 
исследования, что сократит убытки у предприятий, 
осуществляющих добычу нефти, с одной стороны, и 
позволит проводить оперативный анализ для эффектив-
ного и своевременного применения технологий интен-
сификации, повышения нефтеотдачи пласта, с другой. 
В работе проанализированы существующие методы по 
определению призабойных характеристик пласта и под-
ходов машинного обучения. Предложена методика для 
оперативной оценки состояния призабойной зоны пласта: 
проницаемости ПЗП и скин-фактора – с помощью обуче-

ния искусственных нейронных сетей на геологических и 
эксплуатационных данных и результатах интерпретации 
гидродинамических исследований на примере терриген-
ных объектов нефтяных месторождений. Представлены 
результаты тестирования различных архитектур нейрон-
ных сетей для прогнозирования проницаемости ПЗП: 
количества слоев и нейронов в них с выбором наилучшей. 
Использованы технические приемы для предотвращения 
переобучения моделей. Предложена авторская методика 
по оценке скин-фактора скважин с помощью комплекс-
ного анализа построенных статистических моделей и 
моделей обучения искусственных нейронных сетей для 
решения задачи регрессии. 

Ключевые слова: терригенный коллектор, призабой-
ная зона пласта, проницаемость, скин-фактор, машинное 
обучение, нейронная сеть
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