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Abstract. The target formation of a brown oilfield in Western Siberia is composed of a shallowing-up 
succession represented by siltstones in its base gradually replaced by sandstones toward its top. Due to the 
absence of detailed rock- and electrotyping, the siltstones, having much lower resistivity and permeability, 
were assigned to a water-bearing section. However, the following up well tests detected considerable oil 
inflow from them as well. This motivated current research aimed at developing a new methodology of rock- 
and electrotyping of low-resistive, low-permeable clastic reservoirs. The methodology comprises detailed 
workflow for laboratory tests, rock typing by means of the alternative flow zone indicator (FZI), and, finally, 
transfer of core-derived rock types to well log electrotypes. The proposed application of the dimensionless 
FZI parameter, incorporating porosity and irreducible water saturation, appeared to be very effective for 
electrotyping of the formation, including low-resistive and low-permeable intervals. 

Since the intervals are characterized by a low correlation between permeability and porosity, applying 
the latter log for computing permeability results in unreliable calculation of the parameter and further 
incorrect electrotyping. In order to resolve this issue, the study suggests an effective alternative technique 
for calculating permeability as a multivariate parameter from other logs.

Further, the research proposes a well log interpretation workflow that enables conversion of the defined 
rock types to electrotypes, maintaining the same classification principles for both core and well logs data. 
This ensures compatibility of the core and well log-derived classes. 

The petrophysical interpretation workflow is enhanced with machine learning algorithms for reconstructing 
lacking logs as well as extending the defined electrotypes to uninterpreted wells. The proposed approaches to 
rock- and electrotyping allows detection of previously missed productive intervals and thus enables extend 
the lifetime of the brownfield.
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1. Introduction
The prime objective of rock typing is dividing rock 

samples into clusters that can be characterized by a common 
set of equations describing relationships between the key rock 
parameters used for reserves and production rate calculation 
(Gholami et al., 2009; Shvalyuk et al., 2021). Electrotyping 
is aimed at deriving from well logs of formation intervals, 
corresponding to the rock types established for the core (Curtis 
et al., 2015).

It is worth mentioning that rock and electrotyping are 
commonly based on survey of different rock volume and 
measured characteristics. Moreover, translation of core rock 
types to electrotypes lacks unified approaches, and is often 

disputable, particularly, when limited well logging and core 
data are available (Guo et al., 2007; Aranibar et al., 2013; 
Gupta 2017; Perry et al., 2019).

The most popular rock and electrotyping procedures 
involve differentiation on porosity-permeability. For example, 
rock typing, based on defining “Flow Units” (Amaefule 
et al., 1993; Tiab et al., 2016), includes calculation of two 
classification parameters, namely flow zone indicator (FZI) 
and reservoir quality index (RQI) (Abbaszadeh et al., 1996; 
Teh et al., 2012; Kassem et al., 2017). FZI is commonly 
calculated as a function of porosity and permeability. If we 
apply core data for FZI calculation, these two parameters are 
measured with different tests independently of each other. At 
the same time, if FZI is derived from well logs, the applied 
permeability is calculated from the porosity log by means of 
correlation equations. Thereby, the process of electrotyping 
loops on differentiation mainly by log-derived porosity values.

Other commonly used concepts for rock typing and 
consequent permeability calculation, such as Winland or 
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Pittman (Kolodzie, 1980; Pittman, 1992), link porosity, 
permeability, and representative pore throat radius, 
corresponding to a certain mercury saturation during a MICP 
test. At least two arguments can be opposed to these concepts. 
First, fluid flow is controlled by more than one pore throat 
radius size, thus the representativeness of the applied singe 
value is disputable (Mirzaei-Paiaman et al., 2018). Second, 
these concepts remain dependant on primarily linking porosity 
with permeability, as in the “Flow Units” theory. Thus, in 
order to ensure involvement of permeability as independent 
variable in rock typing, it must be calculated from well logs 
other than porosity.

Permeability is controlled by multiple bulk and 
microstructural rock characteristics, such as porosity, 
irreducible water saturation, pore size distribution, tortuosity, 
connectivity, rock mineralogy, wettability and others (Mustafa 
et al., 2019; Saxena et al., 2019; Eltom, 2020). Due to this 
fact, representative calculation of permeability should be 
based on well logs influenced by similar factors. Because 
electrical current conductivity and ion diffusion are subjected 
to equivalent rock’s microstructural characteristics as fluid 
filtration, resistivity as well as spontaneous potential (SP) logs 
can potentially be used for permeability assessment, (Pirson et 
al., 1963; Smits, 1968; Coates, Dumanoir 1973; Abbaszadeh 
et al., 1996; Ma et al., 2015).

Unfortunately, many fields suffer from inconsistency 
or lack of core and well logging data that reduces the 
reliability of rock and electrotyping. This, in turn, results in 
missing producing intervals and miscalculating hydrocarbon 
reserves. This poses a need for advanced approaches to 
data reconstruction, including machine learning algorithms. 
Moreover, applying sophisticated machine learning algorithms 
for extension of electrotypes, defined by a petrophysicist, 
to wells, where neither core nor well log interpretation was 
done, will increase the reliability of the reservoir delineation, 
particularly in disputable zones, where applying conventional 
simplistic threshold-based models can produce bias results 
(Akkurt et al., 2018; Perez et al., 2005; Man et al., 2021; 
Merembayev et al., 2021).

The target formation of a brown oilfield in the Western 
Siberia is composed of a shallowing up succession, 
represented by siltstones in its base, gradually replaced by 
sandstones toward its top. The siltstones are characterized 
by low electrical resistivity and permeability, and thus were 
previously assigned to a water-bearing part of the reservoir 
and excluded from the production. However further well tests 
showed oil inflow from them as well. Therefore, development 
of new alternative petrophysical interpretation methodology 
for the formation was needed in order to correctly reassess 
its production potential.

Considering the low-permeable and low-resistive 
formation characterization issues mentioned above, the 
main objective of this work is to provide a new advanced 
petrophysical interpretation, enabling reliable identifying 
electrotypes using core and conventional well logging data.

This requires accomplishing the following tasks:
• Proposing an alternative rock typing index, acknowledging 

the microstructural characteristics of the low-resistive 
formation.

• Developing an alternative permeability calculation 
technique, not engaging porosity logs, in order to ensure 

independence of all entities in the applied rock typing index.
• Conversion of defined rock types to electrotypes, 

maintaining the same classification principles for both core 
and well logs data.

• Implementation of machine learning for logs 
reconstruction and automatic extension of defined electrotypes 
to manually uninterpreted wells.

2. Materials and Methods
2.1. Core and Well-logging Data Interpretation
An overall workflow applied in the research for 

electrotyping is shown in Figure 1.
The results of routine core analyses (RCAL) and special 

core analyses (SCAL), comprises:
• Helium porosity (j) and permeability with the 

Klinkenberg correction (k);
• Rock bulk (ρb) and grain (ρma) densities; 
• Capillary pressure curves obtained in “gas-water” system 

and residual water saturation (Swir);
• Resistivity measurements;
• Nuclear magnetic resonance (NMR) spectra, obtained 

before centrifuging (Sw = 100%) and after centrifuging 
(Sw = Swir);

• Computed tomography (CT) scanning;
• X-ray diffraction (XRD);
Well logging data includes: 
• Gamma ray (12 wells);
• Spontaneous Potential (12 wells);
• Neutron log (12 wells);
• Resistivity log (12 wells);
• Density log (7 wells);
• Sonic log (12 wells, including 6 with recorded logs and 

6 with reconstructed one by means of ML).
Well logging data interpretation includes a preliminary 

synthesis of absent well logs by means of multilinear 
regressions (MLR). Afterwards, lithotyping, mineralogical 
composition j, k, Swir and FZI are calculated. The mineralogical 
model and well log-derived j are calibrated on core XRD and 
porosity data. Permeability is calculated with multilinear 
regression as a function of clay volume (Vclay), normalized 
micro-resistivity (Rnorm) and relative parameter of spontaneous 
potential log (ASP). 

Equation for Rnorm calculation is:

	
(1)

where Rnorm is normalized resistivity, RXO is flushed zone 
resistivity, RXO

max is the resistivity value in a thick dense layer, 
Rmud is drilling mud resistivity. The micro-resistivity, measured 
within the flushed zone, is applied to exclude the influence of 
formation fluid, which can vary with depth.

ASP parameter is calculated as follows:

 
	

(2)

where PSP is pseudo-static spontaneous potential, which 
is the SP deflection obtained for clay beds, SSP is a static 
spontaneous potential of a nearby thick, clean sand (Glover, 
2000).

Swir is derived from the correlation between j and k, 
obtained for core data. 
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Flow Zone Indicator (FZI) is calculated from the reservoir 
quality index (RQI) and j as follows (Amaefule et al., 2006; 
Tiab et al., 2016):

	
(3)

	
(4)

While the conventional RQI and FZI are calculated 
as a function of porosity and permeability, we apply a 
dimensionless FZI parameter derived from porosity and 
irreducible water saturation. This approach is appeared to be 

more appropriate for the low-permeable rocks typing, because 
they vary to a greater extent in irreducible water saturation 
rather than in permeability values, which are close to the lower 
threshold of instrumental measurement.

3. Results
3.1. Core Rock Types Identification
Rock typing is done based on integrated interpretation 

of flow zone indicator (FZI) with the results of porosity-
permeability measurements, centrifuging, resistivity, NMR 
and CT-scanning tests. Analysis of the cumulative curve of FZI 
and the porosity versus permeability plot, shown in Figure 2, 

Table 1. Summary table of rock types quantitative characteristics. FZI is flow zone indicator, Swir is irreducible water saturation, Mo and Me are 
ranges of modal and median pore radii, T2cutoff is a transverse relaxation time of the cut-off value

RT FZI Swir (%) Grains 
diameters 
(mm) 

Me (µm) Mo (µm) Pores with 
radius less than 
0.32 µm (%) 

Group 
T2cutoff 
(ms) 

Saturation 
exponent n 

Cation 
exchange 
capacity, (eq/L) 

1st <0.5 >79.09 <0.005 <0.032 <0.032 64–70 5–6 0.92 0.188 
2nd 0.5–1.5 45.2–60.3 0.02–0.12 0.032–0.08 0.032–0.6 37–52 5–6 1.45 0.112 
3rd 1.5–3.5 26.43–32.52 0.1–0.25 0.2–0.7 0.6–5.6 18–30 11–12 1.91 0.062 
4th >3.5 <22.44 0.2-0.4 1.1–1.4 3.2–10 13–17 11–12 2.1 0.056 

Figure 1. Methodology for reliable rock typing of low-resistive and low-permeable formations based on core and well logging data interpretation 

Figure 2. a) cumulative curve of FZI values for RTs Identification and b) porosity versus permeability plot for four RTs identified by means of 
integrated interpretation of FZI, RCAL and SCAL results
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allows confident distinguishing of 4 rock types (Table 1). 
The characteristic results of CT-scanning, NMR studies and 
capillary pressure tests for each individual rock type (RT) are 
presented in Figure 3 and Figure 4.

The 1st RT is composed of tight, fine-grained, low-
permeable siltstones with massive microstructure lacking a 
visible connected system of pores. The connectivity of the 
porous network can be affected by different factors, such as 
carbonate cementation or poor grains’ sorting. Pores with a 
radius less than 0.032 mm prevail. Т2cutoff for this RT is the 
lowest and its spectra at irreducible and full water saturations 
are close to each other, which indicates that almost all porous 
space is filled with irreducible water (Figure 3 and Figure 4). 

The 2nd RT comprises siltstone and tight sandstone samples 
with porosity ranging from 10–15% and permeability less 

than 1 mD. The porous media of this RT mainly consists of 
tiny not well-connected pores with radii varying from 0.032 
to 0.56 mm. The grain size of the RT varies from 0.02 to 0.12 
mm. Several samples contain carbonate grains and clay seams, 
which are clearly observed as light inclusions and lines in the 
CT-scan images. The samples of the 2nd rock, similarly to the 1st 

one, are characterized by low Т2cutoff values. Nevertheless, the 
proportion of interconnected effective porosity, according to 
NMR spectra and CT-scans, is higher in the 2nd RT (Figure 4).

The 3nd RT is represented by silty sandstones. The sand 
grains from 0.1 to 0.25 mm in diameter dominate, although 
the total grain size distribution is in the range from 0.05 to 0.4 
mm. The permeability values reach 15 mD. The pores radii 
are presented mostly in range from 0.6 to 5.6 mm. The space 
available for free fluids filtration is much larger as compared 

Figure 3. The characteristic results of CT-scanning, NMR studies and capillary pressure tests regarding established rock types (from the left 
to the right): 1) 2D CT-scans: brighter pixels have high absorption and represent a denser phase of the mineral matrix of the rock. In the 
studied rock, pyrite has the highest X-ray adsorption capacity, calcite has medium value, and quartz, feldspars – the lowest; 2) NMR spectra 
and identified T2cutoff values (the samples’ numbers are shown in brackets); 3) pore radii distributions, combined from CT and capillary pressure 
tests results
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with the 2nd and 3nd RTs, and the fraction of irreducible water 
is less than 33% (Table 1).

In the sandstones of the 4th RT the grains with a diameter 
of 0.2−0.4 mm dominate, while the total grain size distribution 
extends from 0.05 to 0.6 mm (Figure 4). Permeability 
is relatively high, ranging from 30 to 74 mD. The RT is 
characterized by a well-developed network of large pores, 
varying in radii from 3.2 mm to 10 mm. According to NMR 
spectra and capillary pressure tests this rock type has the 
least irreducible water saturation (Swir < 23%) (Figure 3 and 
Figure 4). Thus, the 4th RT composes the best part of the 
reservoir.

The saturation exponent n consistently decreases from the 
4th to the 1st RT. This trend corresponds to mineral fraction 
fining and the consequent increase in irreducible water 
content, resulting in higher conductivity. The increase of the 
fine fractions from the 1st to the 4th RT is also reflected in the 
growth of the volumetric cation exchange capacity (CEC), 
characterising the specific surface of the rocks (Table 1).

The rock typing, derived from joint interpretation of SCAL 
and RCAL tests for a limited set of 20 samples, is extended 
to a data set for 700 samples. The increase of the data set 
does not change the FZI border between the 1st and 2nd RTs. 
However, the boundary between 3nd and 4th RTs is shifted from 
3.5 to 2 (Figure 5). Thus, it can be concluded that the applied 
rock typing approach shows good sustainability to significant 
increase of the quantity of data.

3.2. Integrated Well Log Interpretation
The well log interpretation yields the following logs: 

lithological and mineralogical composition, porosity, 
permeability, irreducible water saturation, and electrotypes. 
The layouts for 2 representative wells are shown in Figure 7, 
and Figure 8. The formation comprises five main lithotypes, 
including sandstones, siltstones, claystones, coals and 

dense rocks (practically impermeable). The mineralogy is 
represented by quartz, feldspar, clay minerals and carbonate 
inclusions. The log-derived mineralogy is calibrated on XRD 
data.

For permeability calculation we investigate the possibilities 
to use its correlation with single logs, namely clay volume 
content (Vclay), spontaneous potential (ASP), normalized 
micro-resistivity (Rnorm), as well as multiple correlation with 
all these logs. 

Clay volume (Vclay) usually correlates with residual 
water content, controlling effective porosity. This explains 
previous attempts of other authors to use this log for 
permeability calculation of clastic reservoirs (Nelson, 1994; 
Vernik, 2000). However, in our formation bound water is 
considerably associated with silt fraction. Thus, applying a 
single correlation between Vclay and permeability does not 
enable its sufficient match with the one measured on core. 
The correlation coefficient (R) in the equation, relating core-
derived k and well-derived Vclay, amounts to just 0.53.

Figure 4. 3D distributions of open (blue colour) and closed (green colour) pores by means of CT-scanning

Figure 5. Cumulative curve of FZI values, calculated based on the 
extended core analyses results



Advanced Well Logging Interpretation…                                        			        A. Thistiakov, E. Shvalyuk, K. Okosun, M. Spasennykh, A. Stenin

GEORESURSY / GEORESOURCES168

www.geors.ru

The SP amplitude is influenced by both clay volume 
and porosity (Smits, 1968). As the result, in the considered 
formation permeability appears to have higher correlation with 
ASP (R = 0.78) than with Vclay. However, because SP log has 
relatively low spatial resolution, for permeability calculation 
it should be accompanied by other logs.

While Vclay and ASP represent mainly bulk properties of the 
rock, electrical resistivity responds much stronger to porous 
network characteristics, such as size distribution, tortuosity, 
connectivity and so on. This explains the observed strongest 
correlation (R = 0.85) between permeability and resistivity 
logs.

Permeability, derived from the multiple logs (Rnorm, 
Vclay and ASP) is appeared to have the best correlation (R = 
0.87) with core-measured permeability. For comparison, the 
coefficient of correlation between permeability and total 
porosity log amounts only R = 0.56.

Following the permeability prediction, the irreducible 
water was also calculated from borehole logs. Since 
independent well logging data on Swir, such as NMR logging, 
was not available, Swir was calculated based on the correlation 
function of porosity and permeability, measured on core 
(equation 5):

k
Swir = 0.79 , R=0.91

	
(5)

3.3. Electrotyping
FZI is calculated with equations (3) and (4). The FZI 

boundary values, derived from core and log data, are equal 
to each other (Figure 5 and Figure 6). This enables consistent 
transfer of core-derived types to electrotypes, shown together 
with the lithology log and core data Figure 7 and Figure 8. 
Average properties and mineralogical composition for each 
electrotype are presented in Table 2. 

The 1st electrotype is represented mainly by siltstones (60 
%) and claystones (24%), it also includes some 14% of dense 
rocks and 2% of coals. 

The 2nd electrotype is composed of siltstones (54%), 
claystones (23%), sandstones (19%), and dense rocks (some 
4%). The 3nd and 4th electrotypes are represented mainly by 
sandstones, 76% and 96%, respectively. 

The 4th electrotype is characterized by the highest j and 
k, as well as by the lowest Swir, and is considered the “best 
reservoir”.

3.4. Application of Machine Learning for Well Log 
Reconstruction and Electrotyping

Machine learning (ML) in this research was used for i) 
reconstruction of sonic logs, absent in a number of wells 
and ii) automatization of petrophysical interpretation of logs 
in remaining wells of the field. First, we describe well logs 
reconstruction, then we discuss the selected algorithms for 
electrotyping, and finally we present the results of ML-based 
interpretation (Figure 9).

3.4.1. Well Logging Data Reconstruction using MLR
Wells at the target field often lack density and sonic 

logs, those are essential for petrophysical interpretation, 
including construction of a mineralogical model. Thus, this 
study attempts to synthesize them by applying multilinear 
regressions. It appears that confidence of density log 
reconstruction is relatively low. Its influence on electrotype 
prognosis with ML is also insignificant.

Reconstruction of sonic logs (DTP) on the contrary 
produces reliable result (Figure 10). The compressional 
slowness, measured in sonic logging, depends mainly on rock 
bulk density, mineralogical composition and fluid saturation. 
Therefore, gamma ray (GR), neutron (NPOR) and recorded 
density logs are selected as the most relevant entities for sonic 
log generation. If a density log is not present, only NPOR and 
GR logs are applied. The corresponding correlation equations 
are shown below:

DTP_REC = –87.88∙DENSITY + 373.2∙NPOR + 
0.005∙GR + 404.87, R = 0.82, RMSE = 32.33”	 (6)
DTP_REC_2 = –0.01∙GR + 480.52∙NPOR + 170.04, 
R = 0.8, RMSE = 34.132” 	 (7)
The comparison of the reconstructed sonic logs (DTP_REC 

and DTP_REC_2), calculated from these two equations, with 
a reference sonic log (Figure 10) confirms the high reliability 
of ML applied for the log reconstruction.

3.4.2. ML Algorithms Applied for Electrotyping
The ML workflow, used in this research, includes 

data gathering and integration, feature ranking/selection, 
standardization, cross-validation, model development, grid 
search for parameter fine tuning and optimization, and trained 
model implementation. Feature selection and ranking are 
performed by using data visualization utilities such as the 
Pearson correlation coefficient and ranking importance plots. 
The well data is split into training and test sets consisting of 
five training wells, selected based on their data quality.

In order to select the most efficient method, three 
supervised ML algorithms, namely the support vector machine 
(SVM), extreme gradient boost (XGB) and multi-layer 
perceptron (MLP) are applied. The input data set for prediction 
includes DTP, GR, Rnorm, NPOR, density and ASP.

Support vector machine is a supervised machine learning 
algorithm that can be used to solve classification and 
regression problems. Particularly, it is applied for various 
geoengineering purposes, including electrofacies classification 
and lithology interpretation. Those tasks are based on similar 
principles as electrotypes identification regarding prediction 
of specific intervals using well logs and reference flag-curves 
of any geological classes. SVM’s operate on the concept of a 
“margin”, which is either side of a hyperplane, that separates 
two data classes (Cortes, Vapnik, 1995).

Figure 6. Cumulative curve of FZI values, calculated from well logs 
interpretation
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Figure 8. Layout for one of the well: 1st track – measured depth, MD (m); 2ndtrack – calliper (DS) (mm); 3nd – gamma ray log (GR) (API); 4th 

track – spontaneous potential log (SP) (mV) and relative SP parameter (ASP) (v/v); 5th track – micro-potential and micro-gradient resistivity 
logs (Ohm·m); 6th track – high frequency isoperimetric induction logging (Ohm·m); 7th track – deep resistivity log (Ohm·m); 8th track – 
normalized resistivity; 9th track – neutron (NPOR) (v/v) and density (g/cm3) logs; 10th track – compressional slowness (DTP) (μs/m); 11th track – 
mineralogical model (v/v); 12th track – lithological column; 13th track – log- (POR_LOG) and core-derived (CPOR) total porosity (v/v); 14th 

track – log- (PERM_LOG) and core-derived (CPERM) permeability (mD); 15th track – log- (Swir_Log) and core-derived (Swir_Core) irreducible 
water saturation (v/v); 16th track – log- and core-derived rock- and electrotypes

Figure 7. Layout for one of the well: 1st track – measured depth (MD) (m); 2ndtrack – calliper (DS) (mm); 3nd – gamma ray log (GR) (API); 4th 

track – spontaneous potential log (SP) (mV) and relative SP parameter (ASP) (v/v); 5th track – micro-potential and micro-gradient resistivity 
logs (Ohm·m); 6th track – deep resistivity log (Ohm·m); 7th track – normalized micro-resistivity; 8th track – neutron (NPOR) (v/v) and density 
(g/cm3) logs; 9th track – compressional slowness (DTP) (ms/m); 10th track – mineralogical model (v/v); 11th track – lithological column; 12-15th 

tracks – clay minerals, quartz, feldspars and carbonate contents (%) with core data points from XRD; 16th track – log- (POR_LOG) and core-
derived (CPOR) total porosity (v/v); 17th track – log- (PERM_LOG) and core-derived (CPERM) permeability (mD); 18h track – log- (Swir_Log) 
and core-derived (Swir_Core) irreducible water saturation (v/v); 19th track – log- and core-derived rock- and electrotypes
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Table 2. Summary table of electrotypes quantitative characteristics. FZI is a flow zone indicator; Swir is an average irreducible water saturation; 
k is a geometric mean value of permeability

Electrotype FZI Swir (%) ϕ (%) k (mD) Quartz (%) Feldspar (%) Clay minerals (%) Carbonate (%) 
1st <0.5 64.1 10.4 0.3 8.9 42.4 32.8 1.5 
2nd 0.5–1.5 55.0 11.1 0.9 11.7 39.0 36.0 2.0 
3rd 1.5–2 36.9 14.6 12.7 20.1 53.5 7.8 8.2 
4th >2 33.4 16.4 25.8 19.9 58.8 1.8 2.9 

Let’s consider a labelled dataset consisting of N pairs 
(xi, yi), where xi is the ith feature vector, and yi is the ith class 
label. Assume, that there are two classes, and that yi is either 
1 or −1. It is possible to predict the sign of y for any point x 
using a linear classifier, so that for a new x, we can predict  
by means of equation (8):

	 (8)
In this equation a and b represent a hyperplane, given by 

the points aT x+b=0. Notice, that the magnitude of aT x+b 
grows as the point x moves farther away from the hyperplane. 
Maximizing the margin and, as a result, establishing the 
greatest possible distance between the separating hyperplane 
and the instances on either side of it has been shown to 
lower the upper bound on the expected generalization error 
(Kotsiantis, 2007). This hyperplane separates the positive 
data from the negative data and is an example of a decision 
boundary. When a point crosses the decision boundary, the 
predicted label for that point changes (Sarkar et al., 2018).

Boosting is an ensemble modeling technique that attempts 
to build a strong classifier from the number of weak classifiers. 
This is achieved by adding new weak models to the ensemble 
sequentially. First a base model is built from the training data. 
Thereafter, on each iteration, a newer model is introduced into 
the bloc which tries to correct errors of the previous models:

	 (9)

Figure 9. Application of ML for well log reconstruction and 
electrotyping

Figure 10. An example of sonic log synthesis using MLR; measured 
sonic log (pink) and reconstructed (DTP_REC is calculated from 
GR, density and NPOR; DTP_REC_2 is calculated from GR and W)

where α1 denotes the corresponding weight for the first weak 
model M1 ( ).

Sequential model training uses gradient boosting, to 
gradually minimize a loss function. Based on this concept, 
the predicted output becomes equal to the predictions of all 
weak models, as shown in equation (10):

	 (10)
where N denotes the number of weak models. The loss 
function is minimized in the same manner as an artificial neural 
network model in which weights are optimized. Following 
the constructing of the weak learners in gradient boosting, 
the predictions are compared with the actual values using 
the equation:

	 (11)

The difference between prediction and actual values 
represents the model error rate. It can be used to calculate 
the gradient, which is essentially the partial derivative of the 
loss function. The gradient is used to determine the direction 
in which model parameters must be modified to reduce error 
in the subsequent training phase. Compared with neural 
network models, where the main function is to minimize a 
loss function in a single model, gradient boosting combines 
the predictions of numerous models. The gradient boosting 
algorithm is usually applied for lithology prediction.

The MLP algorithm uses a multi-layer neural network. 
It is constructed of a large number of units (neurons), which 
are connected in a pattern. In a network, units are typically 
classified into three types: input units, which receive 
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Figure 11. Layout displaying the results of electrotyping by means 
of ML algorithms: 1st track – measured depth MD (m); 2nd track – 
gamma ray log (GR) (API); 3nd track – normalized micro-resistivity 
(v/v); 4th track – neutron log (NPOR) (v/v); 5th track – density 
log (g/cm3); 6th track – relative spontaneous potential parameter 
(ASP) (v/v); 7th track – core-derived rock types; 8th – 11th tracks – 
electrotypes derived from well logs interpretation, SVM prediction, 
XBG prediction, MLP prediction

information for processing; output units, which contain the 
results of the processing; and hidden units, which are located in 
the middle. The hidden unit, containing one or more non-linear 
units, distinguishes it from other algorithms. The connection 
between each pair of nodes is represented by weights, wij, in 
which i and j represent nodes in the input and output layers, 
respectively. The weight, as a given value, is comparable 
with the electrochemical signal’s strength. Computations on 
the input units (Ii) in the hidden layer(s) (hj) are performed by 
using weights and biases:

	 (12)
In the equation the bias θj is a pseudo node, having an 

output value of 1 that is applied, when the input value is 0. As 
the final step for each node hj output value is computed using 
an activation function (F) that determines the signal amplitude 
based on the action potential of the node:

	 (13)

The MLP algorithm is applied mainly for electrofacies 
classification and lithology interpretation, as well as for 
prediction of petrophysical properties of rock sequences 
in non-cored wells, hydraulic flow unit classification and 
prediction.

To sum up, the ML classification algorithms operate 
based on different mathematical principles. As a result, they 
produce unidentical results. Therefore, to establish the most 
appropriate algorithm for electrotyping, the comparison of 
their performance should be done. Performance metrics, such 
as accuracy, precision, recall, F1-score, as well as support and 
confusion matrices are used to assess the model’s predictive 
quality. The stratified k-fold cross-validation procedure is 
applied for estimation of the algorithm’s performance on 
unseen data. This technique usually results in a less biased 
or less optimistic estimate of the model’s opportunities than 
other methods.

3.5. ML Results of ML-based Electrotyping
The comparison of electrotypes distribution predicted by 

ML and interpreted by a petrophysicist is shown in Figure 11. 
The mean accuracy for each algorithm is obtained with the 
stratified k-fold cross-validation technique on the available 
dataset. A k-fold of 10 is used for the electrotype samples. The 
MLP algorithm appears to provide the best scoring results for 
the prediction of electrotypes (Table 4).

Table 3 presents a summary of the performance metrics for 
electrotypes, predicted by ML, against electrotypes, derived 
from well logs interpretation. The electrotypes predicted by 
each algorithm show relatively high reliability: precision, 
recall, F1-score and accuracy are greater than 0.84, 0.85, 0.84 
and 0.85, respectively. The closer these performance metrics 
are to 1, the more precise the predicted results.

The mean accuracy for each algorithm is obtained with 
the stratified k-fold cross-validation technique on the available 
dataset. A k-fold of 10 is used for the electrotype samples. The 
MLP algorithm appears to provide the best scoring results for 
the prediction of electrotypes (Table 4).

4. Discussion
RQI and FZI parameters are traditionally calculated from 

permeability and porosity values and have length units (m). 
For the target formation, composed considerably of low-

permeable rocks, it is ineffective to apply permeability-based 
RQI and FZI parameters or calculate permeability by using 
the core-derived function of porosity.

As an alternative to common practice, we apply еру 
dimensionless FZI parameter, derived from porosity and 
irreducible water saturation. This parameter appears to be 
more effective for low-permeable rocks, wich have much 
higher variation in Swir rather than in permeability. 

A microstructural study supports the rock types derived 
from the dimensionless FZI. Each defined rock type has 
characteristic parameters of a porous network obtained with 
CT and NMR tests.

In order to transfer core-derived rock types to well log-
derived electrotypes, we apply the same characteristics, 
namely j and Swir logs. The integrity of the whole workflow 
enables very good depth match of the rock types, derived 
from core and logs.

Since independent well logging data on Swir (for example, 
from NMR logging) is not available for this project, we 
calculate Swir log based on k and j logs, applying corresponding 
correlation equation, obtained for core data.

To maintain the independence of k and j in calculating 
log-derived FZI, we calculate permeability not as a function 
of a porosity log as most practitioners do, but as a function of 
multiple parameters, namely of Vclay, ASP and Rnorm.

We calculate k by applying micro-resistivity log, since 
it is not affected by fluid type, comparing to deep resistivity 
logs. We use normalized values of micro-resistivity, in order 
to mitigate effect of drilling mud conductivity variation in 
different wells.

Permeability, derived from the multiple logs (Rnorm, Vclay 
and ASP) has the best correlation (R = 0.87) with core-
measured permeability, since this set of logs reflects both 
rock bulk properties as well as porous network characteristics.

Construction of mineralogical model for polymineral 
rocks requires a sufficient number of logs. Since a sonic log 
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Table 3. Summary of Accuracy (Acc.) and F1-score (F1) after running three ML methods

Algorithm Well 1 Well 2 Well 3 Well 4 Well 5 Well 6 

Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 

Support Vector 
Machine 

0.86 0.85 0.89 0.89 0.87 0.87 0.83 0.77 0.82 0.80 0.86 0.86 

Gradient Boosting 
Classifier 

0.89 0.89 0.91 0.89 0.89 0.89 0.90 0.91 0.73 0.75 0.88 0.88 

Multi-Layer 
Perceptron Classifier 

0.85 0.84 0.91 0.91 0.88 0.86 0.94 0.94 0.77 0.75 0.90 0.90 

Table 4. Average cross validation score for each ML algorithms 
based on electrotypes

Algorithm Model Accuracy Mean 
Support Vector Machine 0.852 
Gradient Boosting Classifier 0.842 
Multi-Layer Perceptron Classifier 0.880 

was not available for all wells, it was reconstructed with ML. 
Adding the synthesized sonic logs to the data set, applied 
for calculation of mineralogical content and identification of 
electrotypes by means of ML, significantly increases reliability 
of the produced results.

The combination of consistent petrophysical interpretation 
with supervised machine learning techniques yields 
geologically minded, reliable and reproducible results. The 
accuracy of electrotypes prediction by ML amounts to 0.89, 
thus the selected algorithm, trained even on a relatively 
limited number of wells, produces reliable results. Therefore, 
its application can be extended on a larger quantity of wells 
that will significantly optimize petrophysical interpretation 
for the whole field.

5. Conclusions
The study developed and successfully applied a new 

methodology of rock typing and electrotyping of low-resistive, 
low-permeable clastic reservoirs. The methodology comprises 
detailed workflow for laboratory tests, rock typing by means 
of the alternative FZI parameter, transfer of core-derived rock 
types to well log electrotypes, calculation of permeability 
logs by using a multilinear regression, application of ML for 
reconstructing lacking logs and extension of electrotypes to 
uninterpreted wells.

The proposed application of the dimensionless FZI 
parameter, incorporating porosity and irreducible water 
saturation, proved to be very effective for electrotyping of 
the formation, including low-resistive and low-permeable 
intervals.

An effective alternative technique for calculating 
permeability as a multivariate parameter from independent 
logs is suggested. The correlation coefficient between 
measured and predicted permeability amounts to R = 0.87, 
whereas the R obtained for calculation of k with the traditional 
method as a function of porosity (j) is 0.56 only.

The proposed well log interpretation workflow enables 
conversion of the defined rock types to electrotypes, 
maintaining the same classification principles for both core 
and well logs data. This ensures reliable identification of 

electrotypes in both high and low-permeable rock intervals. 
Previous studies of this as well as other low-resistive formation 
could not sufficiently classify the rocks into petrophysically 
meaningful units.

This study applies supervised ML-assisted electrotyping 
upon detailed well log interpretation on reference wells that 
ensures that the results produced are more accurate, consistent, 
and less prone to bias. Multi-Layer Perceptron algorithm 
seems to be the most reliable. ML is applied the first time for 
this low-resistive formation.

Applying the new approaches to rock typing allows 
detection of productive intervals previously missed and thus 
enables extending the lifetime of the brownfield.

6. Nomenclature
RCAL – routine core analysis
SCAL – special core analysis
GR – gamma ray log, API
DENSITY – density log, g/cm3

DT – compressional slowness, μs/m
DT_REC – reconstructed compressional slowness, μs/m
FZI – flow zone indicator, unitless
IR – resistivity index, dimensionless
k – absolute permeability, m2, mD
Mo – modal pore radius interval, m
Me – median pore radius interval, m
NMR – nuclear magnetic resonance
NPOR – neutron log, v/v
Rnorm – normalized resistivity, dimensionless
RT – rock type
RQI – reservoir quality index, unitless
Sw – water saturation volume, %
Swir – irreducible water saturation volume, %
T2 – relaxation time, s
j – total porosity, %
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Оригинальная статья

Новая методика интерпретации данных ГИС для надежной 
петротипизации низкопроницаемых и низкоомных коллекторов

A. Чистяков1*, Е. Швалюк1, К. Окосун1, М. Спасенных1, А. Стенин2
1Сколковский институт науки и технологий, Москва, Россия
2ООО «ЛУКОЙЛ-Инжиниринг», Москва, Россия
Ответственный автор: Алексей Чистяков, e-mail: sharafv@inbox.ru

Аннотация. Целевой пласт месторождения нефти, 
расположенного в Западной Сибири, слагается терриген-
ными породами, представленными в основании алевроли-
тами, плавно переходящими в песчаники вверх по разрезу. 
Из-за отсутствия детальной петротипизации алевролиты, 
имеющие более низкие значения электрического сопро-
тивления и проницаемости, были первоначально отнесены 
к водоносной части разреза. Однако последующие испы-
тания скважин выявили в них значительный приток нефти. 

Для проведения корректного расчета насыщенности 
и выделения нефтеносных интервалов в низкоомных 
терригенных коллекторах в рамках данного исследования 
была разработана новая методика их типизации. Методика 
включает в себя детальное описание программы лабо-
раторных исследований, процедуру типизации пород с 
применением альтернативного индикатора зоны потока 
(FZI), а также алгоритм выделения в разрезах скважин по 
данным ГИС петрофизических типов, соответствующих 
выделенным по керну типов пород (роктипов).

Применение предложенного безразмерного параметра 
FZI, включающего пористость и остаточную водонасы-
щенность, оказалось весьма эффективным для петротипи-
зации пласта, включая низкоомные и низкопроницаемые 
интервалы. При этом следует особо подчеркнуть, что 
разработанный алгоритм интерпретации данных карота-
жа позволяет транслировать выделяемые по керну типы 
пород в выделяемые по данным ГИС петрофизические 
типы, сохраняя одинаковые критерии классификации.

Так как низкопроницаемые интервалы характеризуют-
ся низкой корреляцией между проницаемостью и пористо-
стью, использование параметра пористости, определён-
ного методами ГИС для расчета профиля проницаемости, 
приводит к ненадежному результату. Для решения этой 
проблемы в работе реализуется альтернативная методика 

расчета проницаемости на основании множественной 
корреляции с данными нескольких методов ГИС. 

Для оптимизации практической реализации новых ме-
тодик предлагается несколько алгоритмов машинного обу-
чения, позволяющих реконструировать отсутствующие 
каротажные кривые, а также распространять выделенные 
петротипы на разрезы скважин, в которых детальная пе-
трофизическая интерпретация еще не проводилась. 

Разработанные подходы к петротипизации низкоом-
ных и низкопроницаемых пород позволяют обнаружи-
вать ранее пропущенные продуктивные интервалы, что 
продлит срок экономической рентабельности изученных 
месторождений.

Ключевые слова: ГИС, роктипизация, низкоомные, 
низкопроницаемые коллекторы, петротипизация, машин-
ное обучение
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