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Abstract. The target formation of a brown oilfield in Western Siberia is composed of a shallowing-up
succession represented by siltstones in its base gradually replaced by sandstones toward its top. Due to the
absence of detailed rock- and electrotyping, the siltstones, having much lower resistivity and permeability,
were assigned to a water-bearing section. However, the following up well tests detected considerable oil
inflow from them as well. This motivated current research aimed at developing a new methodology of rock-
and electrotyping of low-resistive, low-permeable clastic reservoirs. The methodology comprises detailed
workflow for laboratory tests, rock typing by means of the alternative flow zone indicator (FZI), and, finally,
transfer of core-derived rock types to well log electrotypes. The proposed application of the dimensionless
FZI parameter, incorporating porosity and irreducible water saturation, appeared to be very effective for
electrotyping of the formation, including low-resistive and low-permeable intervals.

Since the intervals are characterized by a low correlation between permeability and porosity, applying
the latter log for computing permeability results in unreliable calculation of the parameter and further
incorrect electrotyping. In order to resolve this issue, the study suggests an effective alternative technique
for calculating permeability as a multivariate parameter from other logs.

Further, the research proposes a well log interpretation workflow that enables conversion of the defined
rock types to electrotypes, maintaining the same classification principles for both core and well logs data.
This ensures compatibility of the core and well log-derived classes.

The petrophysical interpretation workflow is enhanced with machine learning algorithms for reconstructing
lacking logs as well as extending the defined electrotypes to uninterpreted wells. The proposed approaches to
rock- and electrotyping allows detection of previously missed productive intervals and thus enables extend
the lifetime of the brownfield.
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1. Introduction

The prime objective of rock typing is dividing rock
samples into clusters that can be characterized by a common
set of equations describing relationships between the key rock
parameters used for reserves and production rate calculation
(Gholami et al., 2009; Shvalyuk et al., 2021). Electrotyping
is aimed at deriving from well logs of formation intervals,
corresponding to the rock types established for the core (Curtis
etal., 2015).

It is worth mentioning that rock and electrotyping are
commonly based on survey of different rock volume and
measured characteristics. Moreover, translation of core rock
types to electrotypes lacks unified approaches, and is often
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disputable, particularly, when limited well logging and core
data are available (Guo et al., 2007; Aranibar et al., 2013;
Gupta 2017; Perry et al., 2019).

The most popular rock and electrotyping procedures
involve differentiation on porosity-permeability. For example,
rock typing, based on defining “Flow Units” (Amaefule
et al., 1993; Tiab et al., 2016), includes calculation of two
classification parameters, namely flow zone indicator (FZI)
and reservoir quality index (RQI) (Abbaszadeh et al., 1996;
Teh et al., 2012; Kassem et al., 2017). FZI is commonly
calculated as a function of porosity and permeability. If we
apply core data for FZI calculation, these two parameters are
measured with different tests independently of each other. At
the same time, if FZ] is derived from well logs, the applied
permeability is calculated from the porosity log by means of
correlation equations. Thereby, the process of electrotyping
loops on differentiation mainly by log-derived porosity values.

Other commonly used concepts for rock typing and
consequent permeability calculation, such as Winland or
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Pittman (Kolodzie, 1980; Pittman, 1992), link porosity,
permeability, and representative pore throat radius,
corresponding to a certain mercury saturation during a MICP
test. At least two arguments can be opposed to these concepts.
First, fluid flow is controlled by more than one pore throat
radius size, thus the representativeness of the applied singe
value is disputable (Mirzaei-Paiaman et al., 2018). Second,
these concepts remain dependant on primarily linking porosity
with permeability, as in the “Flow Units” theory. Thus, in
order to ensure involvement of permeability as independent
variable in rock typing, it must be calculated from well logs
other than porosity.

Permeability is controlled by multiple bulk and
microstructural rock characteristics, such as porosity,
irreducible water saturation, pore size distribution, tortuosity,
connectivity, rock mineralogy, wettability and others (Mustafa
et al., 2019; Saxena et al., 2019; Eltom, 2020). Due to this
fact, representative calculation of permeability should be
based on well logs influenced by similar factors. Because
electrical current conductivity and ion diffusion are subjected
to equivalent rock’s microstructural characteristics as fluid
filtration, resistivity as well as spontaneous potential (SP) logs
can potentially be used for permeability assessment, (Pirson et
al., 1963; Smits, 1968; Coates, Dumanoir 1973; Abbaszadeh
etal., 1996; Ma et al., 2015).

Unfortunately, many fields suffer from inconsistency
or lack of core and well logging data that reduces the
reliability of rock and electrotyping. This, in turn, results in
missing producing intervals and miscalculating hydrocarbon
reserves. This poses a need for advanced approaches to
data reconstruction, including machine learning algorithms.
Moreover, applying sophisticated machine learning algorithms
for extension of electrotypes, defined by a petrophysicist,
to wells, where neither core nor well log interpretation was
done, will increase the reliability of the reservoir delineation,
particularly in disputable zones, where applying conventional
simplistic threshold-based models can produce bias results
(Akkurt et al., 2018; Perez et al., 2005; Man et al., 2021;
Merembayev et al., 2021).

The target formation of a brown oilfield in the Western
Siberia is composed of a shallowing up succession,
represented by siltstones in its base, gradually replaced by
sandstones toward its top. The siltstones are characterized
by low electrical resistivity and permeability, and thus were
previously assigned to a water-bearing part of the reservoir
and excluded from the production. However further well tests
showed oil inflow from them as well. Therefore, development
of new alternative petrophysical interpretation methodology
for the formation was needed in order to correctly reassess
its production potential.

Considering the low-permeable and low-resistive
formation characterization issues mentioned above, the
main objective of this work is to provide a new advanced
petrophysical interpretation, enabling reliable identifying
electrotypes using core and conventional well logging data.

This requires accomplishing the following tasks:

* Proposing an alternative rock typing index, acknowledging
the microstructural characteristics of the low-resistive
formation.

* Developing an alternative permeability calculation
technique, not engaging porosity logs, in order to ensure
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independence of all entities in the applied rock typing index.
» Conversion of defined rock types to electrotypes,
maintaining the same classification principles for both core
and well logs data.
* Implementation of machine learning for logs
reconstruction and automatic extension of defined electrotypes
to manually uninterpreted wells.

2. Materials and Methods

2.1. Core and Well-logging Data Interpretation

An overall workflow applied in the research for
electrotyping is shown in Figure 1.

The results of routine core analyses (RCAL) and special
core analyses (SCAL), comprises:

* Helium porosity (@) and permeability with the
Klinkenberg correction (k);

* Rock bulk (p,) and grain (p, ) densities;

* Capillary pressure curves obtained in “gas-water” system
and residual water saturation (S );

* Resistivity measurements;

* Nuclear magnetic resonance (NMR) spectra, obtained
before centrifuging (S = 100%) and after centrifuging
(5,=S,,)

» Computed tomography (CT) scanning;

* X-ray diffraction (XRD);

Well logging data includes:

* Gamma ray (12 wells);

* Spontaneous Potential (12 wells);

* Neutron log (12 wells);

* Resistivity log (12 wells);

* Density log (7 wells);

* Sonic log (12 wells, including 6 with recorded logs and
6 with reconstructed one by means of ML).

Well logging data interpretation includes a preliminary
synthesis of absent well logs by means of multilinear
regressions (MLR). Afterwards, lithotyping, mineralogical
composition ¢, k£, S, . and FZI are calculated. The mineralogical
model and well log-derived ¢ are calibrated on core XRD and
porosity data. Permeability is calculated with multilinear
regression as a function of clay volume (Vclay)’ normalized
micro-resistivity (R, )and relative parameter of spontaneous
potential log (4SP).

Equation for R calculation is:

_ log Ryg™ —log Rxo 1
~ log RyS™ — 10g Ry M

where R is normalized resistivity, R* is flushed zone
resistivity, R, "* is the resistivity value in a thick dense layer,
R isdrilling mud resistivity. The micro-resistivity, measured

mud
within the flushed zone, is applied to exclude the influence of
formation fluid, which can vary with depth.
ASP parameter is calculated as follows:
PSP — SSP

ASP = 2 7227
SPeiay — SSP &Y

norm

where PSP is pseudo-static spontaneous potential, which
is the SP deflection obtained for clay beds, SSP is a static
spontaneous potential of a nearby thick, clean sand (Glover,
2000).

S . is derived from the correlation between ¢ and &,

Wi

obtained for core data.
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Figure 1. Methodology for reliable rock typing of low-resistive and low-permeable formations based on core and well logging data interpretation

Flow Zone Indicator (FZI) is calculated from the reservoir
quality index (RQI) and ¢ as follows (Amaefule et al., 2006;
Tiab et al., 2016):

¢'(1'Swir)
ROI =314 —""""_. /3 3
=31 s ®
1-¢
FZI = RQ]-—(p 4)

While the conventional RQI and FZI are calculated
as a function of porosity and permeability, we apply a
dimensionless FZI parameter derived from porosity and
irreducible water saturation. This approach is appeared to be

Cumulative frequency (fraction)

3

4

Figure 2. a) cumulative curve of FZI values for RTs Identification and b)
integrated interpretation of FZI, RCAL and SCAL results

more appropriate for the low-permeable rocks typing, because
they vary to a greater extent in irreducible water saturation
rather than in permeability values, which are close to the lower
threshold of instrumental measurement.

3. Results

3.1. Core Rock Types Identification

Rock typing is done based on integrated interpretation
of flow zone indicator (FZI) with the results of porosity-
permeability measurements, centrifuging, resistivity, NMR
and CT-scanning tests. Analysis of the cumulative curve of FZ/
and the porosity versus permeability plot, shown in Figure 2,
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porosity versus permeability plot for four RTs identified by means of

RT FZI Syir (Y0) Grains M, (um) M, (um) Pores with Group Saturation Cation
diameters radius less than 7.,; exponentn exchange
(mm) 0.32 pm (%) (ms) capacity, (eq/L)
1 <0.5 >79.09 <0.005 <0.032 <0.032 64-70 5-6 0.92 0.188
2 05-15  45.2-60.3 0.02-0.12  0.032-0.08 0.032-0.6  37-52 5-6 1.45 0.112
3 1.5-3.5 26.43-32.52 0.1-0.25 0.2-0.7 0.6-5.6 18-30 11-12 191 0.062
4 >3.5 <22.44 0.2-0.4 1.1-1.4 3.2-10 13-17 11-12 2.1 0.056

Table 1. Summary table of rock types quantitative characteristics. FZI is flow zone indicator; S, is irreducible water saturation, M, and M, are

ranges of modal and median pore radii, T oy

is a transverse relaxation time of the cut-off value
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allows confident distinguishing of 4 rock types (Table 1).
The characteristic results of CT-scanning, NMR studies and
capillary pressure tests for each individual rock type (RT) are
presented in Figure 3 and Figure 4.

The 1# RT is composed of tight, fine-grained, low-
permeable siltstones with massive microstructure lacking a
visible connected system of pores. The connectivity of the
porous network can be affected by different factors, such as
carbonate cementation or poor grains’ sorting. Pores with a
radius less than 0.032 pm prevail. T, o for this RT is the
lowest and its spectra at irreducible and full water saturations
are close to each other, which indicates that almost all porous
space is filled with irreducible water (Figure 3 and Figure 4).

The 2™RT comprises siltstone and tight sandstone samples
with porosity ranging from 10-15% and permeability less

1St RT
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than 1 mD. The porous media of this RT mainly consists of
tiny not well-connected pores with radii varying from 0.032
to 0.56 um. The grain size of the RT varies from 0.02 to 0.12
mm. Several samples contain carbonate grains and clay seams,
which are clearly observed as light inclusions and lines in the
CT-scan images. The samples of the 2" rock, similarly to the 1*
one, are characterized by low T, ffvalues. Nevertheless, the
proportion of interconnected effective porosity, according to
NMR spectra and CT-scans, is higher in the 2"RT (Figure 4).

The 3" RT is represented by silty sandstones. The sand
grains from 0.1 to 0.25 mm in diameter dominate, although
the total grain size distribution is in the range from 0.05 to 0.4
mm. The permeability values reach 15 mD. The pores radii
are presented mostly in range from 0.6 to 5.6 pm. The space
available for free fluids filtration is much larger as compared
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Figure 3. The characteristic results of CT-scanning, NMR studies and capillary pressure tests regarding established rock types (from the left
to the right): 1) 2D CT-scans: brighter pixels have high absorption and represent a denser phase of the mineral matrix of the rock. In the

studied rock, pyrite has the highest X-ray adsorption capacity, calcite has
and identified T,
tests results

cutoff
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medium value, and quartz, feldspars — the lowest; 2) NMR spectra

values (the samples’ numbers are shown in brackets); 3) pore radii distributions, combined from CT and capillary pressure



GEORESURSY = GEORESOURCES 2024.V.26.1s. 4. Pp. 163-175

gr AN

wWww.geors.ru

Material information:

O Open pores
Wy Open pores = Solid

Material Information:

gy Closed pores @ Closed pores

Figure 4. 3D distributions of open (blue colour) and closed (green colour) pores by means of CT-scanning

with the 2" and 3" RTs, and the fraction of irreducible water
is less than 33% (Table 1).

In the sandstones of the 4" RT the grains with a diameter
0f'0.2—0.4 mm dominate, while the total grain size distribution
extends from 0.05 to 0.6 mm (Figure 4). Permeability
is relatively high, ranging from 30 to 74 mD. The RT is
characterized by a well-developed network of large pores,
varying in radii from 3.2 pm to 10 um. According to NMR
spectra and capillary pressure tests this rock type has the
least irreducible water saturation (S, < 23%) (Figure 3 and
Figure 4). Thus, the 4" RT composes the best part of the
reservoir.

The saturation exponent n consistently decreases from the
4™ to the 1 RT. This trend corresponds to mineral fraction
fining and the consequent increase in irreducible water
content, resulting in higher conductivity. The increase of the
fine fractions from the st to the 4" RT is also reflected in the
growth of the volumetric cation exchange capacity (CEC),
characterising the specific surface of the rocks (Table 1).

The rock typing, derived from joint interpretation of SCAL
and RCAL tests for a limited set of 20 samples, is extended
to a data set for 700 samples. The increase of the data set
does not change the FZI border between the 1% and 2™ RTs.
However, the boundary between 3" and 4™ RTs is shifted from
3.5 to 2 (Figure 5). Thus, it can be concluded that the applied
rock typing approach shows good sustainability to significant
increase of the quantity of data.

3.2. Integrated Well Log Interpretation

The well log interpretation yields the following logs:
lithological and mineralogical composition, porosity,
permeability, irreducible water saturation, and electrotypes.
The layouts for 2 representative wells are shown in Figure 7,
and Figure 8. The formation comprises five main lithotypes,
including sandstones, siltstones, claystones, coals and

1.0 |
z ;
o
E 08 3rd RT
£
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8 06
[
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o
2 o4
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S 02
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-
© o0
2 3 4
FzI

Figure 5. Cumulative curve of FZI values, calculated based on the
extended core analyses results

dense rocks (practically impermeable). The mineralogy is
represented by quartz, feldspar, clay minerals and carbonate
inclusions. The log-derived mineralogy is calibrated on XRD
data.

For permeability calculation we investigate the possibilities
to use its correlation with single logs, namely clay volume
content (chy), spontaneous potential (4SP), normalized
micro-resistivity (R ), as well as multiple correlation with
all these logs.

Clay volume (V) usually correlates with residual
water content, controlling effective porosity. This explains
previous attempts of other authors to use this log for
permeability calculation of clastic reservoirs (Nelson, 1994;
Vernik, 2000). However, in our formation bound water is
considerably associated with silt fraction. Thus, applying a
single correlation between V, ~and permeability does not
enable its sufficient match with the one measured on core.
The correlation coefficient (R) in the equation, relating core-
derived k and well-derived V.., amounts to just 0.53.

norm
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The SP amplitude is influenced by both clay volume
and porosity (Smits, 1968). As the result, in the considered
formation permeability appears to have higher correlation with
ASP (R =0.78) than with V. However, because SP log has
relatively low spatial resolution, for permeability calculation
it should be accompanied by other logs.

While V ey and ASP represent mainly bulk properties of the
rock, electrical resistivity responds much stronger to porous
network characteristics, such as size distribution, tortuosity,
connectivity and so on. This explains the observed strongest
correlation (R = 0.85) between permeability and resistivity
logs.

Permeability, derived from the multiple logs (R,
V ey and ASP) is appeared to have the best correlation (R =
0.87) with core-measured permeability. For comparison, the
coefficient of correlation between permeability and total
porosity log amounts only R = 0.56.

Following the permeability prediction, the irreducible
water was also calculated from borehole logs. Since
independent well logging dataon S, such as NMR logging,
was not available, S . was calculated based on the correlation
function of porosity and permeability, measured on core
(equation 5):

-0.17

k
Swir=0.79 j% , R=0.91 5)

3.3. Electrotyping

FZI is calculated with equations (3) and (4). The FZ/
boundary values, derived from core and log data, are equal
to each other (Figure 5 and Figure 6). This enables consistent
transfer of core-derived types to electrotypes, shown together
with the lithology log and core data Figure 7 and Figure 8.
Average properties and mineralogical composition for each
electrotype are presented in Table 2.

The 1*electrotype is represented mainly by siltstones (60
%) and claystones (24%), it also includes some 14% of dense
rocks and 2% of coals.

The 2™ electrotype is composed of siltstones (54%),
claystones (23%), sandstones (19%), and dense rocks (some
4%). The 3™ and 4™ electrotypes are represented mainly by
sandstones, 76% and 96%, respectively.

The 4™ electrotype is characterized by the highest ¢ and
k, as well as by the lowest S, and is considered the “best
reservoir”.

-
o

d
SERL 40 RT

0.8

0.6

=
)

1
1
1
1
1
1
1
1
1
1
1
1
1
I
1
1
1
I
1
1
1
1

Cumulative frequency (fraction)
o
n

@
(=]
<)

1 2 3
FZI

Figure 6. Cumulative curve of FZI values, calculated from well logs
interpretation
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3.4. Application of Machine Learning for Well Log
Reconstruction and Electrotyping

Machine learning (ML) in this research was used for 1)
reconstruction of sonic logs, absent in a number of wells
and ii) automatization of petrophysical interpretation of logs
in remaining wells of the field. First, we describe well logs
reconstruction, then we discuss the selected algorithms for
electrotyping, and finally we present the results of ML-based
interpretation (Figure 9).

3.4.1. Well Logging Data Reconstruction using MLR

Wells at the target field often lack density and sonic
logs, those are essential for petrophysical interpretation,
including construction of a mineralogical model. Thus, this
study attempts to synthesize them by applying multilinear
regressions. It appears that confidence of density log
reconstruction is relatively low. Its influence on electrotype
prognosis with ML is also insignificant.

Reconstruction of sonic logs (DTP) on the contrary
produces reliable result (Figure 10). The compressional
slowness, measured in sonic logging, depends mainly on rock
bulk density, mineralogical composition and fluid saturation.
Therefore, gamma ray (GR), neutron (NPOR) and recorded
density logs are selected as the most relevant entities for sonic
log generation. If a density log is not present, only NPOR and
GR logs are applied. The corresponding correlation equations
are shown below:

DTP_REC =-87.88-DENSITY + 373.2-NPOR +

0.005-GR + 404.87, R = 0.82, RMSE = 32.33” (6)
DTP _REC 2 =-0.01-GR + 480.52-NPOR + 170.04,
R = 0.8, RMSE = 34.132” (7)

The comparison of the reconstructed sonic logs (DTP_REC
and DTP_REC 2), calculated from these two equations, with
areference sonic log (Figure 10) confirms the high reliability
of ML applied for the log reconstruction.

3.4.2. ML Algorithms Applied for Electrotyping

The ML workflow, used in this research, includes
data gathering and integration, feature ranking/selection,
standardization, cross-validation, model development, grid
search for parameter fine tuning and optimization, and trained
model implementation. Feature selection and ranking are
performed by using data visualization utilities such as the
Pearson correlation coefficient and ranking importance plots.
The well data is split into training and test sets consisting of
five training wells, selected based on their data quality.

In order to select the most efficient method, three
supervised ML algorithms, namely the support vector machine
(SVM), extreme gradient boost (XGB) and multi-layer
perceptron (MLP) are applied. The input data set for prediction
includes DTP, GR, R, NPOR, density and ASP.

Support vector machine is a supervised machine learning
algorithm that can be used to solve classification and
regression problems. Particularly, it is applied for various
geoengineering purposes, including electrofacies classification
and lithology interpretation. Those tasks are based on similar
principles as electrotypes identification regarding prediction
of specific intervals using well logs and reference flag-curves
of any geological classes. SVM’s operate on the concept of a
“margin”, which is either side of a hyperplane, that separates
two data classes (Cortes, Vapnik, 1995).
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Figure 8. Layout for one of the well: I* track — measured depth, MD (m); 2"track — calliper (DS) (mm); 3" — gamma ray log (GR) (API); 4"
track — spontaneous potential log (SP) (mV) and relative SP parameter (ASP) (v/v); 5" track — micro-potential and micro-gradient resistivity
logs (Ohm'm); 6" track — high frequency isoperimetric induction logging (Ohm-m); 7" track — deep resistivity log (Ohm-m); 8" track —
normalized resistivity, 9" track — neutron (NPOR) (v/v) and density (g/cm’) logs, 10" track — compressional slowness (DTP) (us/m), 11" track —
mineralogical model (v/v); 12" track — lithological column; 13" track — log- (POR_LOG) and core-derived (CPOR) total porosity (v/v),; 14"
track — log- (PERM_LOG) and core-derived (CPERM) permeability (mD); 15" track —log- (S, Log) and core-derived (S, _Core) irreducible
water saturation (v/v), 16" track — log- and core-derived rock- and electrotypes

svisossons oy IERESURSY
ISSN 1608-5078 (Online)




Advanced Well Logging Interpretation. ..

grm

A. Thistiakov, E. Shvalyuk, K. Okosun, M. Spasennykh, A. Stenin

Www.geors.ru

Electrotype FZI

Syir (%) ¢ (%) k(mD) Quartz (%) Feldspar (%) Clay minerals (%) Carbonate (%)

1 <0.5 64.1 10.4 0.3 8.9

ond 0.5-1.5 55.0 11.1 0.9 11.7
31 1.5-2 36.9 14.6 12.7 20.1
4" ) 33.4 16.4 25.8 19.9

42.4 32.8 1.5
39.0 36.0 2.0
535 7.8 8.2
58.8 1.8 2.9

Table 2. Summary table of electrotypes quantitative characteristics. FZI is a flow zone indicator; S

k is a geometric mean value of permeability

IIl. Machine learning
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Figure 9. Application of ML for well log reconstruction and
electrotyping

Let’s consider a labelled dataset consisting of N pairs
(x, y), where x, is the i” feature vector, and y, is the i” class
label. Assume, that there are two classes, and that y, is either
1 or —1. It is possible to predict the sign of y for any point x
using a linear classifier, so that for a new x, we can predict y
by means of equation (8):

9 = sign(a’x + b) (8)

In this equation @ and b represent a hyperplane, given by
the points a” x+b=0. Notice, that the magnitude of a” x+b
grows as the point x moves farther away from the hyperplane.
Maximizing the margin and, as a result, establishing the
greatest possible distance between the separating hyperplane
and the instances on either side of it has been shown to
lower the upper bound on the expected generalization error
(Kotsiantis, 2007). This hyperplane separates the positive
data from the negative data and is an example of a decision
boundary. When a point crosses the decision boundary, the
predicted label for that point changes (Sarkar et al., 2018).

Boosting is an ensemble modeling technique that attempts
to build a strong classifier from the number of weak classifiers.
This is achieved by adding new weak models to the ensemble
sequentially. First a base model is built from the training data.
Thereafter, on each iteration, a newer model is introduced into
the bloc which tries to correct errors of the previous models:

Virue = alMl (55) + Y1 (9)
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is an average irreducible water saturation;
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Figure 10. An example of sonic log synthesis using MLR; measured
sonic log (pink) and reconstructed (DTP_REC is calculated from
GR, density and NPOR; DTP_REC 2 is calculated from GR and W)

where o, denotes the corresponding weight for the first weak
model M, (%).

Sequential model training uses gradient boosting, to
gradually minimize a loss function. Based on this concept,
the predicted output becomes equal to the predictions of all
weak models, as shown in equation (10):

Yored = Zﬁvzl a;M;(X) (10)
where N denotes the number of weak models. The loss
function is minimized in the same manner as an artificial neural
network model in which weights are optimized. Following
the constructing of the weak learners in gradient boosting,
the predictions are compared with the actual values using
the equation:

b (1)

The difference between prediction and actual values
represents the model error rate. It can be used to calculate
the gradient, which is essentially the partial derivative of the
loss function. The gradient is used to determine the direction
in which model parameters must be modified to reduce error
in the subsequent training phase. Compared with neural
network models, where the main function is to minimize a
loss function in a single model, gradient boosting combines
the predictions of numerous models. The gradient boosting
algorithm is usually applied for lithology prediction.

The MLP algorithm uses a multi-layer neural network.
It is constructed of a large number of units (neurons), which
are connected in a pattern. In a network, units are typically
classified into three types: input units, which receive

1
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information for processing; output units, which contain the
results of the processing; and hidden units, which are located in
the middle. The hidden unit, containing one or more non-linear
units, distinguishes it from other algorithms. The connection
between each pair of nodes is represented by weights, w,, in
which i and j represent nodes in the input and output layers,
respectively. The weight, as a given value, is comparable
with the electrochemical signal’s strength. Computations on
the input units (/) in the hidden layer(s) (hj) are performed by
using weights and biases:

=Y wy I +6 (12)

In the equation the bias 9 is a pseudo node, having an
output value of 1 that is apphed when the input value is 0. As
the final step for each node /, output value is computed using
an activation function () that determines the signal amplitude
based on the action potential of the node:

6j = F(y) (13)

The MLP algorithm is applied mainly for electrofacies
classification and lithology interpretation, as well as for
prediction of petrophysical properties of rock sequences
in non-cored wells, hydraulic flow unit classification and
prediction.

To sum up, the ML classification algorithms operate
based on different mathematical principles. As a result, they
produce unidentical results. Therefore, to establish the most
appropriate algorithm for electrotyping, the comparison of
their performance should be done. Performance metrics, such
as accuracy, precision, recall, F1-score, as well as support and
confusion matrices are used to assess the model’s predictive
quality. The stratified k-fold cross-validation procedure is
applied for estimation of the algorithm’s performance on
unseen data. This technique usually results in a less biased
or less optimistic estimate of the model’s opportunities than
other methods.

3.5. ML Results of ML-based Electrotyping

The comparison of electrotypes distribution predicted by
ML and interpreted by a petrophysicist is shown in Figure 11.
The mean accuracy for each algorithm is obtained with the
stratified k-fold cross-validation technique on the available
dataset. A k-fold of 10 is used for the electrotype samples. The
MLP algorithm appears to provide the best scoring results for
the prediction of electrotypes (Table 4).

Table 3 presents a summary of the performance metrics for
electrotypes, predicted by ML, against electrotypes, derived
from well logs interpretation. The electrotypes predicted by
each algorithm show relatively high reliability: precision,
recall, F1-score and accuracy are greater than 0.84, 0.85, 0.84
and 0.85, respectively. The closer these performance metrics
are to 1, the more precise the predicted results.

The mean accuracy for each algorithm is obtained with
the stratified k-fold cross-validation technique on the available
dataset. A k-fold of 10 is used for the electrotype samples. The
MLP algorithm appears to provide the best scoring results for
the prediction of electrotypes (Table 4).

4. Discussion

RQI and FZI parameters are traditionally calculated from
permeability and porosity values and have length units (m).
For the target formation, composed considerably of low-
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Figure 11. Layout displaying the results of electrotyping by means
of ML algorithms: I* track — measured depth MD (m); 2" track —
gamma ray log (GR) (API), 3" track — normalized micro-resistivity
(v/v); 4" track — neutron log (NPOR) (v/v); 5" track — density
log (g/cm’®); 6" track — relative spontaneous potential parameter
(ASP) (v/v); 7" track — core-derived rock types; 8" — 11" tracks —
electrotypes derived from well logs interpretation, SVM prediction,
XBG prediction, MLP prediction

permeable rocks, it is ineffective to apply permeability-based
RQI and FZI parameters or calculate permeability by using
the core-derived function of porosity.

As an alternative to common practice, we apply epy
dimensionless FZI parameter, derived from porosity and
irreducible water saturation. This parameter appears to be
more effective for low-permeable rocks, wich have much
higher variation in S _rather than in permeability.

A microstructural study supports the rock types derived
from the dimensionless FZI. Each defined rock type has
characteristic parameters of a porous network obtained with
CT and NMR tests.

In order to transfer core-derived rock types to well log-
derived electrotypes, we apply the same characteristics,
namely g and S logs. The integrity of the whole workflow
enables very good depth match of the rock types, derived
from core and logs.

Since independent well logging data on S (for example,
from NMR logging) is not available for this project, we
calculate S | log based on kand ¢logs, applying corresponding
correlation equation, obtained for core data.

To maintain the independence of k& and ¢ in calculating
log-derived FZI, we calculate permeability not as a function
of a porosity log as most practitioners do, but as a function of
multiple parameters, namely of Vs ASPand R .

We calculate £ by applying micro-resistivity log, since
it is not affected by fluid type, comparing to deep resistivity
logs. We use normalized values of micro-resistivity, in order
to mitigate effect of drilling mud conductivity variation in
different wells.

Permeability, derived from the multiple logs (R , oy
and ASP) has the best correlation (R = 0.87) with core-
measured permeability, since this set of logs reflects both
rock bulk properties as well as porous network characteristics.

Construction of mineralogical model for polymineral
rocks requires a sufficient number of logs. Since a sonic log

I
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Algorithm Well 1 Well 2 Well 3 Well 4 Well 5 Well 6
Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1 Acc. F1

Support Vector 0.86 0.85 0.89 0.89 0.87 0.87 0.83 0.77 0.82 0.80 0.86 0.86

Machine

Gradient Boosting 0.89 0.89 0.91 0.89 0.89 0.89 0.90 0.91 0.73 0.75 0.88 0.88

Classifier

Multi-Layer 0.85 0.84 0.91 0.91 0.88 0.86 0.94 0.94 0.77 0.75 0.90 0.90

Perceptron Classifier

Table 3. Summary of Accuracy (Acc.) and F1-score (F1) after running three ML methods

Algorithm Model Accuracy Mean
Support Vector Machine 0.852
Gradient Boosting Classifier 0.842

Multi-Layer Perceptron Classifier ~ 0.880

Table 4. Average cross validation score for each ML algorithms
based on electrotypes

was not available for all wells, it was reconstructed with ML.
Adding the synthesized sonic logs to the data set, applied
for calculation of mineralogical content and identification of
electrotypes by means of ML, significantly increases reliability
of the produced results.

The combination of consistent petrophysical interpretation
with supervised machine learning techniques yields
geologically minded, reliable and reproducible results. The
accuracy of electrotypes prediction by ML amounts to 0.89,
thus the selected algorithm, trained even on a relatively
limited number of wells, produces reliable results. Therefore,
its application can be extended on a larger quantity of wells
that will significantly optimize petrophysical interpretation
for the whole field.

5. Conclusions

The study developed and successfully applied a new
methodology of rock typing and electrotyping of low-resistive,
low-permeable clastic reservoirs. The methodology comprises
detailed workflow for laboratory tests, rock typing by means
of'the alternative FZI parameter, transfer of core-derived rock
types to well log electrotypes, calculation of permeability
logs by using a multilinear regression, application of ML for
reconstructing lacking logs and extension of electrotypes to
uninterpreted wells.

The proposed application of the dimensionless FZI
parameter, incorporating porosity and irreducible water
saturation, proved to be very effective for electrotyping of
the formation, including low-resistive and low-permeable
intervals.

An effective alternative technique for calculating
permeability as a multivariate parameter from independent
logs is suggested. The correlation coefficient between
measured and predicted permeability amounts to R = 0.87,
whereas the R obtained for calculation of k£ with the traditional
method as a function of porosity (¢) is 0.56 only.

The proposed well log interpretation workflow enables
conversion of the defined rock types to electrotypes,
maintaining the same classification principles for both core
and well logs data. This ensures reliable identification of

GEORESURSY / GEORESOURCES

electrotypes in both high and low-permeable rock intervals.
Previous studies of this as well as other low-resistive formation
could not sufficiently classify the rocks into petrophysically
meaningful units.

This study applies supervised ML-assisted electrotyping
upon detailed well log interpretation on reference wells that
ensures that the results produced are more accurate, consistent,
and less prone to bias. Multi-Layer Perceptron algorithm
seems to be the most reliable. ML is applied the first time for
this low-resistive formation.

Applying the new approaches to rock typing allows
detection of productive intervals previously missed and thus
enables extending the lifetime of the brownfield.

6. Nomenclature

RCAL - routine core analysis

SCAL — special core analysis

GR — gamma ray log, API

DENSITY — density log, g/cm®

DT — compressional slowness, pus/m

DT REC — reconstructed compressional slowness, ps/m
FZI — flow zone indicator, unitless

IR — resistivity index, dimensionless

k — absolute permeability, m?, mD

M — modal pore radius interval, m

M, — median pore radius interval, m

NMR — nuclear magnetic resonance

NPOR — neutron log, v/v

R —normalized resistivity, dimensionless
RT —rock type

RQI — reservoir quality index, unitless

S — water saturation volume, %

S .. — irreducible water saturation volume, %
T, — relaxation time, s

¢ — total porosity, %
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Annoramus. [{eneBoil miacT MecTopokIeHUs He(TH,
pacroioxeHHoro B 3amaaHoi Cubupw, ciaractcs TCppUreH-
HBIMHU [TOPOJIAMHU, IPEACTABICHHBIMU B OCHOBAaHUH aJIEBPOJIU-
TaMH, IJIABHO MEPEXO/SIIMMU B IECYAaHUKH BBEPX 110 Pa3pesy.
N3-3a oTCYTCTBUS A€TANBbHOM METPOTUIIN3ALUH aJIEBPOJIUTHI,
UMeroIIue 0oee HU3KHUE 3HAYCHUS AIIEKTPUICCKOTO COTPO-
THUBIICHUS U IPOHUIIAEMOCTH, OBLIU IIEPBOHAYAITEHO OTHECCHBI
K BOJJOHOCHO# yacTu paspesa. OTHaKO MOCIeAYIOUINE UCTIBI-
TaHUs CKBAXKHH BBIIBIIIN B HUX 3HAYUTEIIBHBIN IIPUTOK HEPTH.

J1st mpoBeneHns KOPPEKTHOTO pacyeTa HaChIILEHHOCTH
U BBIJCIICHUS HE(DTCHOCHBIX WHTCPBAJIOB B HHU3KOOMHBIX
TEPPUTCHHBIX KOJUIEKTOPAX B paMKax JaHHOTO UCCIIEIOBAHUS
ObuIa pa3paboTaHa HOBAsI METOIMKA WX THUMU3AIMU. MeToanka
BKITIOYACT B ce0sl ICTANBHOE OMUCAHHE MPOrpaMMbl Ja0o-
PaTOPHBIX UCCIIEIOBAHUMN, MPOLEAYPY TUIIM3ALUHN TOPOJ C
MPUMEHEHHEM aJbTePHATUBHOIO MHAMKATOPA 30HBI MOTOKA
(FZI), a Taxoke anropuT™ BEIICICHUS B Pa3pe3ax CKBaKUH 110
nmaHHbIM [YIC meTpou3ndeckux THIIOB, COOTBETCTBYFOIIUX
BBIJICIICHHBIM 110 KEPHY THIIOB ITOPOJ] (POKTHUIIOB).

IIpumMeHeHNE MPEUTOKESHHOTO Oe3pa3MEepHOTo ITapaMeTpa
FZ1, Bxitouaroiiero nopucTocTb U OCTaTOUHYIO BOJOHACHI-
IIEHHOCTb, 0Ka3aJI0Ch BeChbMa d()(PEKTUBHBIM TS IETPOTHUITH-
3allM4 TU1acTa, BKIIOYas HU3KOOMHbBIE M HU3KOIIPOHHUIIAEMbIE
uHTepBabl. [Ipu 3TOM cienyer 0co00 MOMYCPKHYTh, YTO
pa3pabOoTaHHBIA AITOPUTM HHTEPIIPETAINH JaHHBIX KapoTa-
Ka MO3BOJISIET TPAHCIUPOBATH BBIJIEISIEMbIE 10 KEPHY THUIIbI
mopoA B BeieisieMbie o qanHbiM [ MIC merpodusndeckue
THUIIBI, COXPAHSS OJIMHAKOBBIC KPUTEPHUU KI1aCCUDUKAIIHN.

Tak KaKk HU3KOIIPOHUIIAEMbIE HHTEPBAJIbI XapaKTEPU3YIOT-
Cs1 HU3KOHM KOppessiien MexX Ty MPOHUIIAEMOCTBIO U TIOPUCTO-
CTBIO, HCIOJIb30BaHUE MapaMeTpa MOPUCTOCTHU, ONPEEIIEH-
Horo Metofamu [ UC st pacdera mpoduitst MpOHUIIAEMOCTH,
MPUBOJUT K HEHAJKHOMY pe3ynbrary. [iist pemienus aToi
po0IeMBI B pab0Te pean3yeTcs albTepHATHBHAS MECTOIUKA
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pacyeTa NMPOHULIAEMOCTH HA OCHOBAHMU MHOKECTBEHHOMU
KOppeJSILMY C TaHHBIMU HeckoJbkuXx MeTonoB ['MC.

JL1st onTUMM3alMY TPAKTUYECKON peau3alii HOBbIX Me-
TOJIVK MPEJUIAracTCsl HECKOIBKO alITOPHTMOB MAIITMHHOTO 00Y-
YEHUSI, TIO3BOJISIIOLIUX PEKOHCTPYUPOBATh OTCYTCTBYIOLINE
KapoTa)KHbIE KPUBBIE, & TAKKE PACIIPOCTPAHSTH BbIICJICHHbBIE
METPOTHUIIBI HA pa3pe3bl CKBAXKUH, B KOTOPBIX J€TalbHAs I1e-
Tpodu3nIeCcKast HHTEPIPETAIHS SIIe HEe IPOBOAMIACK.

PaspaboTaHHBIC TOAXOMBI K METPOTUITU3AIMHA HU3KOOM-
HBIX U HU3KOIPOHUIIAEMBIX MTOPOJ] MO3BOJISIFOT OOHAPYKH-
BaTh paHee NPOMYLICHHbIE MPOJYKTUBHBIE HHTEPBAJIBI, UYTO
MPOJUTHT CPOK IKOHOMHUYECKON PECHTA0CTHHOCTH U3YYCHHBIX
MECTOPOKICHUI.
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Agropsi onarogapsaT OO0 «Jlykoiin MmkunupuHm 3a Gu-
HAHCHPOBAHHE UCCIIC/IOBAHUS M pa3pelieHNe Ha ITyOIMKaIHEo
ero pe3yasTaToB. Pabora nmojiepskana MUHHCTEPCTBOM HayKH
U BBICIIIEro oopasoBanust Poccuiickoii deepariu 1o 10roBopy
Ne 075-15-2020-119 B pamkax nmporpammsl pa3sutyst Hayanoro
LIEHTpa MUPOBOTO YpoBHs. Mbl Oiarogapum MUHHCTEPCTBO
HayKy M BbIcuIero odpaszosanusi Poccuiickoit denepanyn 3a
TIOJUIEPIKKY. ABTOPBI BEIpAKalOT OJ1aroapHocTh CKOIKOBCKOMY
WHCTHUTYTY HayKH 1 TEXHOJIOTHWII 3a TpepocTasieHue rabopa-
TOPHOM 0a3bI TS IPOBEACHHUS SKCIIEPHMEHTOB.
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