ORIGINAL ARTICLE

DOI: https://doi.org/10.18599/grs.2025.3.2

The bottom of the cryolithic zone and conditions for the formation of gas hydrates at the T field in the north of West Siberia

S.E. Agalakov*, K.V. Salova, Yu.A. Sizko Tyumen Petroleum Research Center, Tyumen, Russian Federation

The initial data to estimate the gas hydrate stability interval at the T field in West Siberia has been summarized, i.e. the cross-section temperature, reservoir pressure, gas-to-air density, and formation water salinity. The position of the cryolithic zone bottom was modeled by combining the thermal gradient estimated during well testing and the permafrost bottom position based on resistivity logging data.

Due to the ambiguity in interpreting the position of the bottom of the permafrost and cryolithic zone, two options of the cryolithic zone bottom maps were built: the minimum and maximum. Thus, two options of the gas hydrate stability zone bottom maps were built: the minimum and maximum. It is shown that the upper gas-saturated reservoirs of the T field are located in the gas hydrate stability zone.

Keywords: cryolithic zone, permafrost, gas hydrates, West Siberia

Recommended citation: Agalakov S.E., Salova K.V., Sizko Yu.A. (2025). The bottom of the cryolithic zone and conditions for the formation of gas hydrates at the T field in the north of West Siberia. Georesursy = Georesources, 27(3), pp. 25–35. https://doi.org/10.18599/grs.2025.3.2

Introduction

Gas hydrates are a special form of natural gas and are a potential and strategically important raw material. In 2015–2020, at least 25 scientific thesis papers on topics related to gas hydrates were reviewed in Russia, and over 50 applications for Russian patents were submitted (Shits, 2021). Over the past few years, the number of publications on gas hydrates has increased even more. One of the important areas of research on gas hydrates is to study them in their natural occurrence.

The approach to gas hydrates as a resource potential of West Siberia in the late 70s and early 80s of the last century was developed by the efforts of V.G. Vasiliev, A.A. Trofimuk, Yu.F. Makogon (Vasiliev et al., 1970; Makogon, 1985; Trofimuk et al., 1983), Yakut scientists S.P. Nikitin, V.P. Tsarev, N.V. Cherskiy (Nikitin et al., 1982, Tsarev, 1976, Cherskiy et al., 1983, 1987). In the 1980s, resource assessments were carried out in Leningrad by E.S. Barkan, G.D. Ginzburg, A.N. Voronov, V.P. Yakutseni (Barkan et al., 1983, 1989; Ginzburg et al., 1990). In Tyumen, the features of gas hydrate processes

*Corresponding author: Sergey E. Agalakov e-mail: SEAgalakov@TNNC.rosneft.ru

© 2025 The Authors. Published by Georesursy LLC This is an open access article under the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/)

in West Siberia were studied by S.E. Agalakov, V.A. Nenakhov, A.R. Kurchikov, V.P. Tsarev (Agalakov et al., 1990, 1996, 2003, 2019; Agalakov, 2010; Kurchikov et al., 1984; Nenakhov, 1982). In the 21st century, Moscow scientists are actively involved in resource assessments and methods for developing gas hydrates: K.S. Basniev, V.A. Istomin, S.A. Leonov, E.V. Perlova, A.L. Sukhonosenko, V.S. Yakushev (Basniev et al., 2010; Leonov, 2010; Yakushev et al., 2007, 2014; Perlova et al., 2017; Perlova, 2018; Sukhonosenko, 2013). Reviews on the problem of gas hydrates appear in the literature (Yakutseni, 2015; Gudzenko et al., 2016; Shits, 2021).

Although the main gas hydrate resources are confined to the sea shelf sediments, gas hydrates in the continental part also have significant potential. In West Siberia, the supra-Cenomanian sediments stand out in this regard. The knowledge of their structure and properties achieved to date makes it possible to analyze and model the properties that are key to assessing gas hydrate resources.

Methodology for defining the position of the gas hydrate stability bottom

The main properties that determine the equilibrium thermobaric conditions for the existence of gas hydrates in the pore space (Makogon, 1985) are the section temperature, reservoir pressure, air-gas density, and formation water salinity.

To estimate the gas hydrate stability bottom in the rock mass, an improved formula proposed in the work (Ponomarev, 1960) was used, obtained on the basis of processing experimental data on the conditions of hydrate formation in natural gases of various compositions.

The method and data necessary for building the regional map of the gas hydrate stability interval bottom for the conditions of West Siberia on the cross-section temperature, reservoir pressure properties, formation water salinity, and gas composition were collected and summarized in the work (Agalakov et al., 2023).

Methodology for studying the temperature conditions of the cross-section

The key factor in the existence of gas hydrates is the cooling of the cross-section caused by the presence of permafrost rocks. The following approaches were used to determine the depth of the cryolithic zone bottom (Volodko, 1989; Irbe, 1974; Ostryy, 1969; Agalakov, Nenakhov, 1990; Kurchikov, Agalakov, 2004).

- 1. The direct and most reliable method for determining the temperature regime of the cross-section is thermometry in settled wells – the GGM method (Geothermal Gradient Measurement).
- 2. The position of the cryolithic zone bottom and the temperature gradient in subpermafrost deposits are also determined based on the interpretations of temperature measurement data when testing individual

intervals in wells.

- 3. Well logging materials were used. The position of the permafrost bottom is determined by well logging:
 - Temperature log in unsettled wells by the bend of the cement top location;
 - Resistivity Logging. The physical basis is the effect of increased rock resistivity when pore water is replaced with dielectric agent (ice);
 - Caliper log vugs are common in ice-containing rocks.

When building the maps of the cryolithic zone bottom, it is taken into account that high salinity of formation water and high clay content of the crosssection lead to the fact that the cryolithic zone bottom can be significantly below the permafrost bottom. Therefore, for each region and area, the possibility of a correct transition from the permafrost bottom to the cryolithic zone bottom was considered.

Results of regional studies

Regional maps of the bottom of the cryolithic zone in West Siberia were built using logging data from 735 wells. The data from published sources (Balobaev, Levchenko, 1988; Devyatkin, 1993), from the permafrost catalog (An et al., 2002), and from the Geothermal Atlas (Geothermal atlas of Siberia and the Far East, 2012) were also used. The map (Figure 1) was built solely taking into account the set of available data

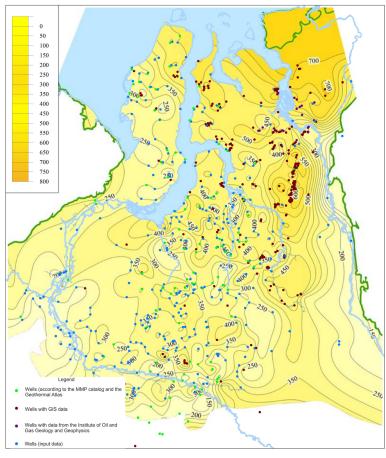


Figure 1. Depth map of the bottom of the cryolithic zone of West Siberia (Agalakov et al., 2023)

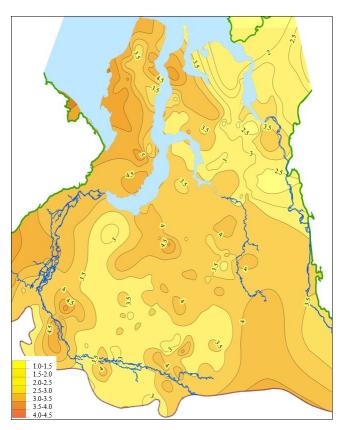


Figure 2. Temperature gradient map of the subpermafrost strata in West Siberia (Agalakov et al., 2023)

on wells within the study area. Ground-based logging, as well as other approaches related to model concepts of the formation and breaking up of permafrost rocks, were not used in map building (Agalakov et al., 2023).

Note that there is a vast meridionally elongated zone of increased permafrost thickness to the west of the Yenisei River. Here, in comparison with the western and central regions, the permafrost interval contains

Figure 3. Overview map with the location of the T field. X, Z are the nearest wells with temperature logs in settled wells

rocks with higher NTG and ice content and which are marked by a slow rise of the cryolithic zone bottom due to climate warming. In general, the resulting map is consistent with previously published maps (Baulin, 1985; Geocryology of the USSR. Western Siberia, 1989) and, in the authors' opinion, is a reliable updated basis for measuring the gas hydrate stability interval in West Siberia.

The final authors' temperature gradient map of the West Siberian Basin is shown in Figure 2 (Agalakov et al., 2023). Here, along the 3.5 deg/100 m isoline, areas of reduced geotemperature gradient are localized, i.e. the northeastern region of the eastern part of the Gydan Peninsula, the Yenisei-Khatanga Regional Trough and

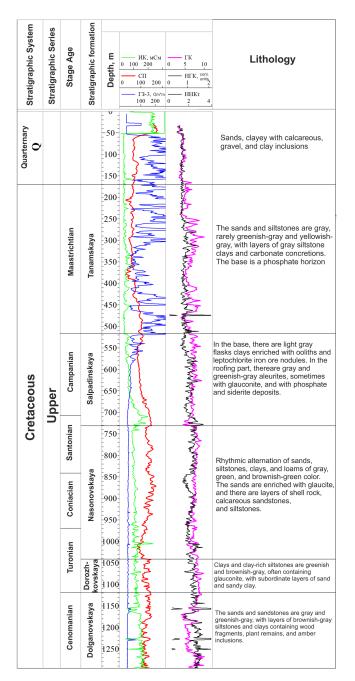


Figure 4. Upper part of the combined geological well section of the T deposit

the Bolshekhetskaya Depression, as well as the Ob-Nadym interfluve area. The area of increased geothermal gradients includes the west of the region and the Nadym-PUR-Taz interfluve.

Results of T field research

In the north-east of West Siberia, along with the increased permafrost thickness, a number of fields with relatively shallow gas accumulations have been interpreted. One of them is the T field (Figure 3). The authors decided to study the field in more detail and determine the possibility of gas hydrate presence in the accumulations of the Dolgansky and Dorozhkovsky Series.

Geological structure

In the frozen state at the T field are (downward) Quaternary deposits, as well as deposits of the Tanamskaya (Maastrichtian – Danian stages) and Salpadinskaya (Campanian stage) Series (Figure 4).

The cross-section is formed by of sandy-clayey deposits, and the clay content increases downward. Permafrost rocks have not been studied at the field. The lithology is based on the description of the official stratigraphic units. The physical properties of rocks have been studied at the neighboring Field X down to a depth of 380. Down to this depth, the total natural moisture content, depending on the grain size, varies from 0.17 to 0.33 and does not depend on the depth. Porosities vary from 0.18 to 0.54. The salt content does not exceed 0.13%.

The bottom of the permafrost occurs in the clayey deposits of the Salpadinskaya Series, which, compared to sandy deposits, makes it difficult to determine its position by well logging due to the gradual transition from ice-bearing rocks to ice-free rocks.

Productive gas-saturated deposits are represented by the Dr and Dl beds of the Dorozhkovskaya and Dolgan Series.

The Dolgan deposits are of coastal-continental genesis – uneven interbedding of fine-grained sandstones with interlayers of carbonaceous-micaceous material and mudstone-like clays, mudstones and siltstones with coal interlayers and lenses.

The DI reservoirs are widespread. The reservoir properties are high. According to the core, the porosities vary from 3 to 41%, on average -31%.

The units of the coastal-marine Dorozhkov Series (Dr) are composed of greenish-brown-gray clays and siltstones, often with glauconites and siderite concretions with rare interlayers of gray, fine-grained sands and sandstones. The reservoir properties are poorer than those of the Dl units. According to the core, the porosities vary from 1.6 to 38.5%, on average – 30%.

Temperature conditions

No temperature logging was performed in the settled wells at the T field.

The closest temperature logging in the settled wells was performed at the X and Z fields, and at the Z field, the temperature was measured only down to a depth of 380 m.

The X field is located 300 km from the studied T field. According to the temperature logging at the X field, the bottom of the cryolithic zone is at 550 m (Figure 5). According to the gradient of the temperature logging

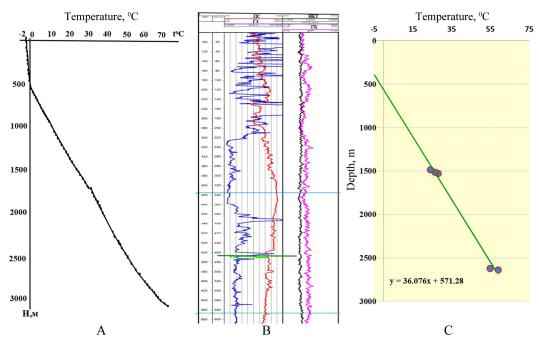


Figure 5. Defining the permafrost bottom position in well 3 based on temperature logging data, using well logging and thermal gradient: A – temperature distribution with depth, B – well logging data, C – defining the thermal gradient at the permafrost bottom

tests, the bottom of the cryolithic zone is at 570 m. According to electrical resistivity logging, the bottom of the permafrost at a depth of 550 m corresponds to the apparent transition from 25 Ohm to 15 Ohm.

According to laboratory studies at the neighboring Z field, the decrease in the freezing point of rocks due to insignificant salinity and high humidity of the cross-section is in the range from -0.17 to 0.23 °C, which, with an average thermal gradient of 3 °C per 100 m vertically, gives a difference in the position of the permafrost and cryolithic zone bottom of no more than 8 m, i.e. less than the error in the measurements by other methods. This fact was taken into account when predicting the position of the cryolithic zone bottom

based on the permafrost bottom data.

Thus, three different methods yielded a comparable result, which provides grounds for using two indirect methods to reconstruct the temperature conditions of the T field vertical section.

At the T field, the position of the permafrost bottom was modeled by combining the thermal gradient estimated during well testing and the position of the permafrost bottom based on resistivity logging data.

As a result, the position of the zero isotherm was estimated using the thermal gradient of 9 wells (Figure 6), relatively evenly distributed in the dome part of the structure. The range of values was 626–687 m, with an average of 649 m. The RMS deviation (SD)

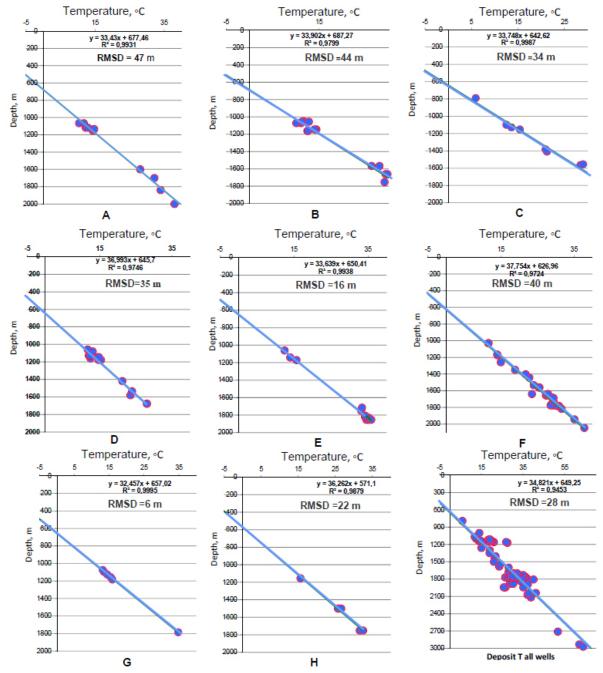


Figure 6. Determination of the position of the cryolithic zone bottom for the study area based on the thermal gradient of the test results from wells A–H

of determining the depth of the zero isotherm for various wells is in the range of 6–47 m. The average RMS deviation was 28 m.

One well with the minimum number of measurements (H) was not taken into account in the estimates, since the depth of the cryolithic zone bottom in it differs from the total sample by 70 m, which is 3.5 times greater than the deviation from the average in the other wells.

According to the well logging data at the field, the permafrost bottom, due to the uncertainty of the resistivity logging readings, was determined for two options – by decreasing the rock resistivities down from 25 and from 15 Ohm. In total, it was possible to use the well logging curves for 17 wells to determine the position of the permafrost bottom.

A comparison of the permafrost bottom position determined by the well logging data and the zero isotherm determined by the thermal gradient was possible for three wells T_A, T_B and T_H (Figure 7).

The uncertainty of determining the permafrost bottom using well logging data was \pm 20 m. The difference in the position of the permafrost bottom from the cryolithic zone bottom due to salinity of formation water, as noted above, does not exceed 8 meters.

As a result, the uncertainties in determining the permafrost bottom using well logging and testing data

(28 m) are comparable. At the same time, there is good agreement between these methods on well average – the average for the thermal gradient is 649 m, the average for well logging is 652 m.

Due to the ambiguity in determining the position of the permafrost and cryolithic zone bottom, it was decided to build two possible maps of the permafrost bottom – the minimum and maximum (Figure 8).

Work was also performed to determine other parameters necessary for estimating the position of the gas hydrate stability zone bottom – reservoir pressure, formation water salinity and natural gas composition.

Reservoir pressure

According to test data, abnormally high pressure was not recorded in Dr and Dl formations. The anomaly coefficient in the estimates was taken to be 1.

Formation water salinity and gas composition

Table 1 shows data on formation water salinity and gas composition.

The range of formation water salinity variation was 7600-8900 mg/l. The average salinity S=8395 mg/l was used for the estimates.

Natural gas is of methane composition (about 99% of methane), the gas-to-air density varies in the range of

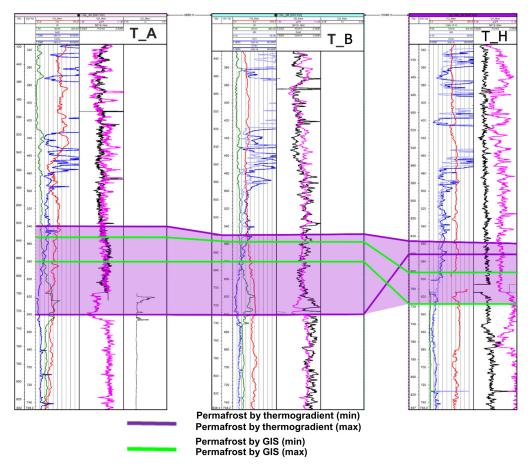


Figure 7. Wells with well logging and tests in the Dorozhkovsky and Dolgansky reservoirs. The range of uncertainty in the cryolithic zone bottom position is shown in lilac.

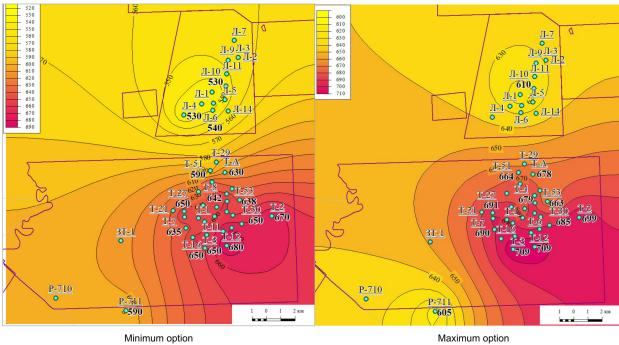


Figure 8. Maps of the position of the cryolithic zone bottom of the study area in the minimum and maximum options

0.559-0.563 with an average of P = 0.561.

In accordance with the two maps of the cryolithic zone bottom, two options of the maps of the gas hydrate stability zone bottom were built – minimum and maximum (Figure 9).

In the maximum option, the gas hydrate stability zone bottom lies in the depth range of 1100-1180 m, in the minimum option -1005-1140 m.

According to the maps, at a minimum, the gas hydrate stability zone cover the upper part of the accumulation in the Dr-1 formation, and at a maximum, it also covers

the accumulations of the Dr-1, Dr-2 formations and the upper part of the accumulation of the Dr-3 formation (Figure 10).

Summary

In the scientific literature on gas hydrates in West Siberia, the presence of gas hydrates in the Messoyakha field has been discussed. This study suggests another promising target for the presence of natural gas hydrates – the T field.

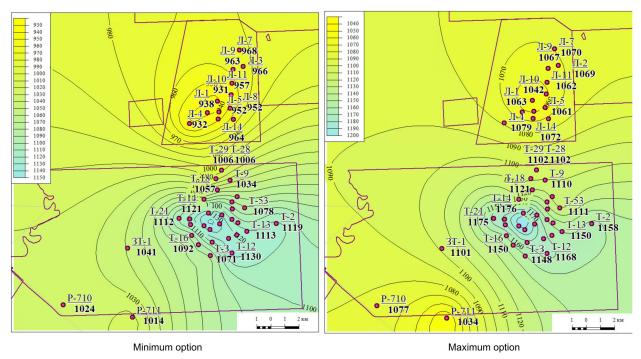


Figure 9. Two options of the position of the gas hydrate stability bottom at the T field

GEORESURSY / GEORESOURCES

Formation Water Salinity

Gas Composition

Summey							
Reservoir	Total salinity						
Dr-I	8850						
Dr-I	8120						
Dr-I	8900						
Dr-I	8740						
Dr-II	7659						
Dr-II	8371						
Dr-II	7961						
Dr-II	8140						
Dr-II	8590						
Dr-II	8110						
Dr-II	8900						
Average	8395						

Reservoir, zone	Sampling Depth	Content, % mol.											Gas density		
		CO_2	N_2	Не	Ar	H_2	CH ₄	C_2H_6	C_3H_8	iC ₄ H ₁₀	nC ₄ H ₁₀	iC_5H_{12}	nC ₅ H ₁₂	C ₆₊	
Dr-3	1082.0	0.025	1.019	0.011	N/D	0	98.728	0.147	0.011	0.004	0.005	0.004	0.002	0.044	0.562
Average for the accumulation		0.025	1.019	-	1	-	98.728	0.147	0.011	0.004	0.005	0.004	0.002	0.044	0.562
Dl-1	1130.6	0.043	1.018	0.01	N/D	0.001	98.667	0.161	0.002	0.004	0.001	0.002	0	0.091	0.563
DI-1	1186.0	0.024	0.861	0.01	N/D	0	98.94	0.143	0.002	0	0	0.003	0	0.017	0.559
	Average for the accumulation		0.94	0.01	1	0.001	98.804	0.152	0.002	0.002	0.001	0.003	0	0.054	0.561
D1-2	1155.3	0.016	0.739	0.013	N/D	0	98.997	0.183	0.005	0.001	0.001	0.004	0.001	0.04	0.56
Average for the accumulation		0.016	0.739	1	1	0	98.997	0.183	0.005	0.001	0.001	0.004	0.001	0.04	0.56
Dl-3	1156	0.065	1.344	0.021	N/D	0	98.429	0.104	0.005	0.001	0.002	0.003	0	0.026	0.562
	1216.0	0.026	0.945	0.014	N/D	0	98.845	0.139	0.01	0.002	0.005	0.002	0.002	0.01	0.56
	1160.0	0.015	0.693	0.013	N/D	0	99.084	0.173	0.003	0.001	0.001	0.004	0.001	0.012	0.559
	Average for the accumulation		0.994	0.016	1	0	98.786	0.139	0.006	0.001	0.003	0.003	0.001	0.016	0.56
Taken estin															0.561

Table 1. Formation Water Salinity and Gas Composition

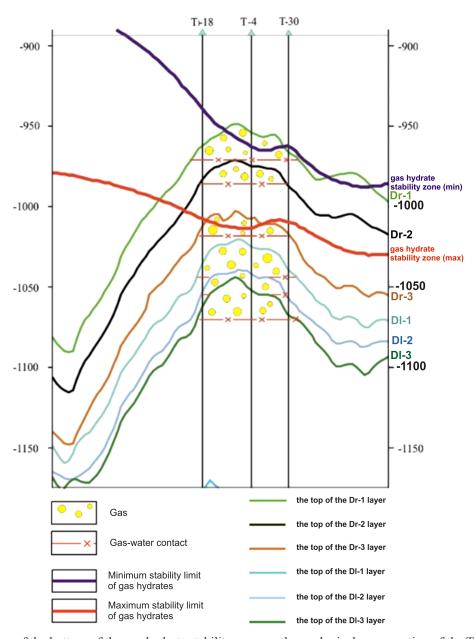


Figure 10. Position of the bottom of the gas hydrate stability zone on the geological cross-section of the T field

Summarized the data on the temperature conditions of the cross-section, the composition of natural gas, reservoir pressures, and formation water salinity of the

Due to the existing uncertainties in the temperature conditions of the cross-section, the cryolithic zone bottom and, accordingly, the gas hydrate stability bottom for the T field were estimated in maximum and minimum options.

For the first time the authors showed that the upper gas-saturated layers of the T field are located in the gas hydrate stability zone.

Further studies should be related to:

- Temperature measurements in settled wells;
- · Analysis of test results in gas and gas hydrate
- Special well logging studies in potentially hydratecontaining intervals;

- · Gas hydrate laboratory studies on the core from productive reservoirs;
- Extracting sealed cores with undecomposed gas hydrates, studying them both at the well and in a specialized laboratory;
- Assessing gas reserves, adjusting gas development technology taking into account their hydrate saturation.

References

Agalakov S.E., Nenakhov V.A. (1990). Geophysical characteristics of the geological section of the cryolithohydrate zone of Western Siberia. Coll. papers: Resources of unconventional gas raw materials and problems of its development. Leningrad: VNIGRI, pp. 228-236. (In Russ.)

Agalakov S.E., Bochkarev V.S., Tsarev V.P. (1996). Features of the structure of the cryolithozone of the Yamal Peninsula. Coll. papers: Biodiversity of Western Siberia - results of studies. Tyumen: IPOS SO RAN, pp. 103–118. (In Russ.)

Agalakov S.E., Kurchikov A.R., Baburin A.N. (2003). Geological and geophysical prerequisites for the existence of gas hydrates in the Turonian-Coniacian deposits of the East Messoyakhskoye field. Proc. Conf.: GAS HYDRATES IN THE EARTH'S ECOSYSTEM - 2003. Novosibirsk. (In Russ.)

Agalakov S.E. (2010). Gas resources in gas hydrate stability zones in the north of Western Siberia. Report at the International Conference: Towards New Discoveries through the Integration of Geosciences. St. Petersburg. (In Russ.)

Agalakov S.E., Novoselova M.Yu. (2019). Gas content of the Upper Cenomanian deposits in Western Siberia. Oil and Gas Studies, (4), pp. 10–23. (In Russ.) https://doi.org/10.31660/0445-0108-2019-4-10-23

Agalakov S.E., Kuzovkov A.A., Ozirnaya E.T., Plavnik A.G. (2023). Regional constructions of maps of the permafrost zone thickness and the base of the gas hydrate stability interval in Western Siberia. Ekspozitsiya Neft'Gaz, 8, pp. 46-55. (In Russ.) DOI 10.24412/2076-6785-2023-8-46-55

An V.N., Devyatkin V.N., Kurchikov A.R. (2002). Catalogue of permafrost-geothermal information of the West Siberian region. (In Russ.)

Balobaev V.T., Levchenko A.I. (1988). Deep freezing and dynamics of the thermal field of the upper part of the earth's crust in Western Siberia. Petroleum geological interpretations of the thermal regime of the earth's crust of Western Siberia. Tyumen, pp. 31–41. (In Russ.)

Barkan E.S., Voronov A.N. (1983). Assessment of gas resources in zones of possible hydrate formation. Sovetskaya geologiya, 8, pp. 26-29. (In Russ.)

Barkan E.S., Bezrukov V.M., Ginzburg G.D. et al. (1989). Unconventional Sources of Hydrocarbon Raw Materials. Edited by V.P. Yakutseni. Moscow: Nedra, 223 p. (In Russ.)

Basniev K.S., Sukhonosenko A.L. (2010). Prospects for Development of Gas Hydrate Deposits. Gazovaya promyshlennost, 1(641), pp. 22-23.

Baulin V.V. (1985). Permafrost Rocks of Oil and Gas Bearing Regions of the USSR. Moscow: Nedra, 176 p. (In Russ.)

Cherskiy N.V. et al. (1983). Research and forecasting of conditions for the accumulation of gas resources in gas hydrate deposits. Yakutskiy filial SO AN SSSR, 156 p. (In Russ.)

Cherskiy N.V., Nikitin S.P. (1987). Study of gas content of hydrate formation zones of the USSR. Yakutsk, 176 p. (In Russ.)

Geocryology of the USSR. Western Siberia (1989). Ed. E.D. Ershov. Moscow: Nedra, 454 p. (In Russ.)

Geothermal atlas of Siberia and the Far East (2012). INGG SO RAN. (In Russ.)

Ginsburg G.D., Soloviev V.A. (1990). Geological models of gas hydrate formation. Lithology and Mineral Resources, 2, pp. 76-87. (In Russ.)

Gudzenko V.T., Varenichev A.A., Gromova M.P. (2016). Gas hydrates. Information and analytical review. Geologiya, geofizika i razrabotka neftyanykh i gazovykh mestorozhdeniy, 5, pp. 39-68. (In Russ.)

Devyatkin V.N. (1993). Heat flow of the cryolithozone of Siberia. Novosibirsk: Nauka, 165 p. (In Russ.)

Duchkov A.D., Kurchikov A.R., Lysak S.V., Balobaev V.T. et al. (1987). Thermal field of the earth's crust of Siberia. Novosibirsk: Nauka, 196 p. (In Russ.)

Irbe N.A. (1974). Features of interpretation of geophysical data in the low-temperature section of Western Siberia at the stage of prospecting and exploration works. Issues of geology and drilling of wells in the zone of frozen rocks at oil and gas fields of Western Siberia, is. 65, pp. 98-120. (In Russ.)

Istomin V.A., Yakushev V.S. (1992). Gas hydrates in natural conditions. Moscow: Nedra, 236 p. (In Russ.)

Kurchikov A.R. (1984). Assessment of the possibility of searching for natural gas hydrate deposits based on geothermal data. ZapSibNIGNI, is. 191, pp. 65-76. (In Russ.)

Kurchikov A.R., Agalakov S.E. (2004). Thickness of permafrost rocks and geothermal regime of the upper part of the section of the North of Western Siberia. Gornye vedomosti, 4, pp. 21-37. (In Russ.)

Leonov S.A. (2010). Prospects for hydrate content of the upper Cenomanian deposits in the north of Western Siberia. Abstract Cand. geol. and min. sci. diss. Moscow, 24 p. (In Russ.)

Makogon Yu.F. (1985). Gas hydrates, prevention of their formation and use. Moscow: Nedra, 231 p. (In Russ.)

Nenakhov V.A. (1982). Study of the features of gas hydrate field development in order to increase gas recovery. Abstract Cand. geol. and min. sci. diss. Moscow, 20 p. (In Russ.)

Nikitin S.P., Tsarev V.P., Cherskiy N.V. (1982). Recommendations for taking into account the influence of the gas hydrate process on the assessment of gas potential in Western Siberia. Yakutsk, 30 p. (In Russ.)

Ostryy G.B. (1969). Methodology for identifying frozen rocks in a section. Issues of geology and drilling and production in the frozen rock zone at oil and gas fields in Western Siberia, is. 18. (In Russ.)

Perlova E.V., Leonov S.A., Khabibullin D.Ya. (2017). Priority issues for the development of gas hydrate deposits in Russia. Problems of resource provision of gas producing regions of Russia. Moscow: Gazprom VNIIGAZ, pp. 224-228. (In Russ.)

Perlova E.V. (2018). Preparation of hydrate gas resources for the development of the mineral resource base of gas production of PJSC Gazprom. Nauchno-tekhnicheskiy sbornik Vesti gazovoy nauki, 3(35), pp. 256-263. (In Russ.)

Ponomarev G.V. (1960). Conditions for the formation of hydrates of natural and associated gases. Is. 2. Kuybyshev: NIINP, pp. 49-55. (In Russ.)

Sukhonosenko A.L. (2013). Thermohydrodynamic modeling of gas hydrate deposit development processes. Abstract sci. diss. Moscow, 28 p. (In Russ.)

Shits Yu. A. et al. (2021). Gas hydrates: a brief review of modern Russian research in 2015-2020. Gazovaya promyshlennost, 2(812), pp. 46-56. (In Russ.)

Trofimuk A.A., Makogon Yu.F., Tolkachev M.V. (1983). On the role of gas hydrates in the processes of hydrocarbon accumulation and the formation of their deposits. Geologiya i geofizika, 6, pp. 3-15. (In Russ.)

Tsarev V.P. (1976). Features of formation, methods of prospecting and development of hydrocarbon accumulations in permafrost conditions. Yakutsk: Yakutskoe knizhnoe izdatel'stvo, 216 pp. (In Russ.)

Vasiliev V.G., Makogon Yu.F., Trebin F.A., Trofimuk A.A., Cherskiy N.V. (1970). Properties of natural gases in the earth's crust in a solid state, forming gas hydrate deposits. Otkrytiya, izobreteniya i tovarnye znaki, 10, pp. 3-5. (In Russ.)

Volodko B.V. (1979). On the possibility of determining the thickness of frozen terrigenous strata using the spontaneous polarization method. Permafrost Engineering. Novosibirsk: Nauka, 208 p. (In Russ.)

Yakutseni V.P. (2015). Gas hydrates - unconventional gas raw materials, their formation, properties, distribution and geological resources. Neftegazovaya geologiya. Teoriya i praktika, 10(4). (În Russ.) https://doi. org/10.17353/2070-5379/45_2015

Yakushev V.S. et al. (2014). Gas hydrates in the Arctic and the world ocean: features of occurrence and development prospects. Moscow: Nedra, 251 p. (In Russ.) EDN: VNKPSF

Yakushev V.S., Istomin V.A., Perlova E.V. (2007). Resources and prospects for the development of unconventional gas sources in Russia. Moscow: VNIIGAZ, 86 p.

About the Authors

Sergey E. Agalakov - Dr. Sci. (Geology and Mineralogy), Senior Expert, Expert-Analytical Department, Tyumen Petroleum Research Center

42 Maksim Gorky st., Tyumen, 625048, Russian Federation

e-mail: SEAgalakov@tnnc.rosneft.ru

Ksenia V. Salova - Chief Specialist, Geological Exploration Department of the North of Western Siberia, Tyumen Petroleum Research Center

42 Maksim Gorky st., Tyumen, 625048, Russian Federation

e-mail: kvsalova@tnnc.rosneft.ru

Yulia A. Sizko – Leading Specialist, Geological Exploration Department of the North of Western Siberia, Tyumen Petroleum Research Center

42 Maksim Gorky st., Tyumen, 625048, Russian Federation

e-mail: yasizko@tnnc.rosneft.ru

Manuscript received 1 November 2024; Accepted 26 May 2025; Published 20 September 2025

© 2025 The Authors. This article is published in open access under the terms and conditions of the Creative Commons Attribution (CC BY) License (https://creativecommons.org/licenses/by/4.0/)

Подошва криолитозоны и предпосылки существования газогидратов на месторождении Т севера Западной Сибири

С.Е. Агалаков*, К.В. Салова, Ю.А. Сизько ООО «Тюменский нефтяной научный центр», Тюмень, Россия

Обобщены исходные данные для расчета интервала стабильности газовых гидратов на месторождении Т Западной Сибири – температура разреза, пластовое давление, плотность газа по воздуху, минерализация пластовых вод. Определение положения подошвы криолитозоны моделировалось комплексированием термоградиента, рассчитанного при испытаниях скважин и положения подошвы многолетнемерзлых пород (ММП) по данным каротажа удельного электрического сопротивления.

В связи с неоднозначностью определения положения подошвы ММП и криолитозоны построены два варианта карт подошвы криолитозоны - минимальный и максимальный. Соответственно, было построено два варианта карт подошвы зоны стабильности газогидратов - минимальный и максимальный. Показано, что верхние газонасыщенные пласты месторождения Т находятся в зоне стабильности газогидратов.

Ключевые слова: криолитозона, многолетнемерзлые породы, газовые гидраты, Западная Сибирь

Для цитирования: Агалаков С.Е., Салова К.В., Сизько Ю.А. (2025). Подошва криолитозоны и предпосылки существования газогидратов на месторождении Т севера Западной Сибири. Георесурсы, 27(3), с. 25–35. https://doi. org/10.18599/grs.2025.3.2