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This study presents the first ’Sr/**Sr isotope data for the Middle—Upper Devonian strata of the central part
of the Volga—Ural petroleum province, which are based on ramiform conodont elements. The stratigraphic
position of most samples was verified using platform conodonts they contained. The ¥’Sr/**Sr values obtained
are consistent with the global strontium curve, indicating a contiguous connection between this region
and the world ocean throughout the Devonian. These results confirm general stratigraphic completeness
of the regional succession despite numerous discontinuities and the complex intercalation of black shales,
siliciclastics, and carbonates.
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1 Introduction

The Volga—Ural petroleum province is located on the
southeastern margin of the East European Platform, adjacent
to the Cis—Ural Foredeep and the Ural Mountains (Fig. 1).
The central part of the Volga—Ural province is a large complex
multilayer hydrocarbon system confined to the Devonian
siliciclastic and carbonate reservoirs (Muslimov, 2007). Owing
to its oil-bearing nature, the Devonian stratigraphy of this area
has been studied in detail, which makes this region an ideal
object for chemostratigraphic studies.

Strontium is one of the most abundant elements in the
waters of the world ocean, where its concentration shows
low variability and weak dependence on depth and salinity,
especially in offshore environment (Lebrato et al., 2020;
Castro, Huber, 2003). In the recent ocean, the mean Sr
concentration in the water is of 7.85+0.03 pg/g (Brass,
Turekian, 1972, 1974). The ¥Sr/*Sr ratio is determined by
two primary sources: the weathering of silicate minerals
in terrestrial settings, contributing Sr with a relatively high
87Sr/%Sr ratio, and the hydrothermal activity of mid-ocean
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ridges, which produce the Sr with a less radiogenic *’Sr/*¢Sr
ratio. The contribution of these sources to the total strontium
isotopic composition (*’Sr/*°Sr ratio) in seawater can be
estimated by the following equation:

YSr/*Sr = (x)¥Sr/*Sr + (lfx)87Sr/868rhf.,

where x is the fraction of strontium in seawater derived from
river water; and sw, rw, and Af represent the ¥’Sr/*Sr ratios
in seawater (sw), river water (rw), and hydrothermal fluids
(hf') respectively.

The possibility of dating and correlating strata using the
87Sr/%Sr ratio is justified by the regular change in this value
during geological time. Strontium isomorphically replaces
calcium in carbonate, sulphate, and phosphate minerals
(including biominerals), but carbonate is the most commonly
analysed material due to its widespread occurrence (McArthur,
1994; Veizer et al., 1999).

The determination of Sr isotopes in Palaeozoic strata is
complicated by diagenetic alteration of rocks and fossils.
Diagenetic alteration of carbonate rocks and fossils can
produce changes in the initial Sr isotopic composition in them,
creating difficulties for data interpretation. Thus, it is essential
to select suitable objects whose stratigraphic resolution
matches the Srresidence time in the ocean (approximately 2.4
million years) (Jones, Jenkyns, 2001) and avoid samples with
significant post-sedimentation alteration. Signs of alteration
include high levels of silicate, and organic matter, and elevated
Mn/Sr and Fe/Sr ratios.
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The variation curve of the ¥Sr/*Sr ratio for Phanerozoic
seawater has been established by integrating data from
numerous studies, summarised in reviews (McArthur, 1994;
Hairuo et al., 1998; Veizer et al., 1999; McArthur et al.,
2020). Van Geldern et al. (2006) provided a key study for the
Devonian strontium isotope stratigraphy, constructing the
most detailed ¥’St/*Sr curve based on brachiopod shell calcite.
Additional reliable data come from studies of brachiopod shell
calcite (Brand, 1991, 2004; Zaky et al., 2019) and conodont
apatite (Kurschner et al., 1992; Ebneth et al., 1997; Veizer et
al., 1997; John et al., 2008; Le Houedec et al., 2017; Emsbo et
al., 2018). The *’Sr/*Sr ratio shows two maxima, in the Lower

Devonian (0.70870) and in the Upper Devonian (0.70808),

separated by a minimum (~0.70782) from the base of the
Eifelian to the middle Givetian. This well-defined negative
excursion, linked to increased hydrothermal activity at mid-
ocean ridges or decreased weathering of #”Sr-rich continental
rocks (Jones, Jenkyns, 2001), makes ¥Sr/*¢Sr values suitable
for isotope stratigraphy.

Conodonts (class Conodonta, Pander 1856) are extinct
small nektonic animals that are similar to the modern
chaetognaths. Their tooth-like remains (conodont elements
or simply conodonts), composed of biogenic apatite,
are commonly used in strontium isotope stratigraphy
(e.g., Kurschner et al., 1992; Ebneth et al., 1997; Veizer et al.,
1997; Song et al., 2015; Woodard et al., 2013). The strontium
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Fig. 1. Location of the studied area and its position in terms of the Middle Devonian palaeogeography: (a) Overview map; (b) Palacogeographic
map (simplified from Golonka (2002), Torsvik, Cocks (2017), Blakey (2021), Scotese (PALEOMAP Project, http://www.scotese.com/)); (c)
Middle Frasnian to Famennian palaeogeography of the East European Platform and the Ural Palaeoocean (simplified from Nikishin et al.
(1996), Kabanov et al. (2023a)); (d) location of the studied wells within the Volga—Ural petroleum province
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isotopic composition in conodont apatite is thought to reflect
the composition of seawater at the time of the existence of
these organisms.

Conodonts are characterised by the high content of
strontium (0.2 to 0.5 wt%) (Pietzner et al., 1968, Wright, 1989;
Wright et al., 1990; Bertram et al., 1992; Katvala, Henderson,
2012), which is incorporated into the bioapatite crystal lattice
during the growth of the organism and shows a regular pattern
in the conodont hard tissues (Zhuravlev, Shevchuk, 2017).
Usually, the maximum amount of strontium is concentrated
in paralamellar and albid tissues (‘white matter’) (Wright,
1989; Holmden et al., 1996; Zhuravlev, Shevchuk, 2017) of
ramiform elements (Holmden et al., 1996), the most common
in conodont apparatus. The degree of diagenetic alteration of
conodont bioapatite can be assessed by the Colour Alteration
Index (CAI), which is used as a proxy of thermal alteration
(Kolodny, Epstein, 1976; Epstein et al., 1977). The CAI
reflects the alteration and degradation of the organic matter
in the conodont tissues. The thermal diagenetic changes in
conodont elements also affect the mineral component of
the conodont tissues provoking its re-crystallisation and
contamination of the conodont bioapatite (Zhuravlev, 2023).

Conodonts offer significant biostratigraphic advantages
as objects of chemostratigraphy. Their evolutionary features,
ubiquitous distribution in Devonian marine settings, and
detailed zonal stratigraphy make them ideal for Sr isotope
stratigraphy. The extinction of conodonts in the Late Triassic
or earliest Jurassic, which precludes the possibility of direct
comparison of their isotope values with modern analogues, is
assumed to be the main limitation of conodont application in
strontium isotope stratigraphy (Aldridge et al., 1986; Conway-
Morris, 1989; Du et al., 2023).

Despite these limitations, the widespread distribution of
conodonts in Devonian marine strata, their high strontium
content, relative resistance to diagenetic changes, and detailed
stratigraphic zonation make conodonts a reliable material for
strontium isotope stratigraphy (Kovach, 1980, 1981; Keto,
Jacobsen, 1987; Griffin et al., 2021). The aim of this study
is the chemostratigraphic interpretation of ¥’Sr/*¢Sr values
obtained from the Devonian conodonts of the central part of
the Volga—Ural province.

2 Geological settings and palaeogeographic

framework

The Devonian of the Volga—Ural petroleum province
is represented by the Lower, Middle and Upper Series,
with a total thickness of 500—-1500 m (Fig. 2). The Lower
Devonian is locally distributed, whereas the Middle and Upper
Devonian are widespread. The stratigraphic completeness of
the Devonian geological record of this area is proved by the
contiguous succession of conodont zones (Ziegler, 1962, 1969,
1971; Wittekindt, 1966; Bultynck, 1975; Ziegler, Sandberg,
1984, 1990; Aristov, 1988; Rzhonsnitskaya, Kulikova, 1990;
Sandberg, Ziegler, 1996; Ovnatanova, Kononova, 2008;
Nazarova, Kononova, 2016, 2020; Fortunatova et al., 2018;
Becker et al., 2020), which can be traced from the kockelianus
Zone of the Eifelian to the Devonian—Carboniferous boundary
(Fig. 3).

In the central part of the Volga—Ural petroleum province,
the Devonian strata form the basal part of the sedimentary cover
and unconformably overlie either the Cryogenian-Ediacaran

rocks in the aulacogens or the crystalline basement. The
composition of the strata, faunal assemblages, thickness and
completeness of the succession vary considerably over the
area. The Devonian strata include black shales, which are
considered to be the oil source, and carbonate and siliciclastic
rocks serving as reservoirs (Silantiev et al., 2024).

2.1 The Black Shales

They consist of organic rich mixed carbonate-clay or
siliceous-clay-carbonate rocks. It is assumed that the organic
matter of the black shales has originated under euxinic
conditions in the photic zone of the Kama—Kinel Trough
System (Fig. 1¢) (Kabanov et al., 2023a, 2023b). The thickness
of the black shales usually is several hundred metres The
increase in the thickness observed in some cases was probably
caused by the growth in the input of siliciclastic material from
the adjacent land.

The faunistic assemblages within the black shales exhibit
reduced biodiversity of the benthic fauna, including a few
species of brachiopods. In contrast, planktonic and nektonic
fossils are more diverse and contain radiolarians, ostracods
(Entomozoidae), tentaculitids (mainly dacryoconarids),
pteropods (winged molluscs), thin-shelled bivalves,
cephalopods, etc.

The accumulation of organic-rich black shales began at
the end of the Eifelian and continued until the beginning of
the Mississippian (Tournaisian). Usually black shales contain
conodonts in quantities suitable for isotope analysis.

2.2 Carbonate Sediments

Carbonate sediments were accumulated on isolated
carbonate buildups (reefs and banks), and on off-reef carbonate
and mud ramps. The isolated carbonate buildups (up to 600 m
thick) consist of bioclastic, oolitic, microbial limestones
containing a rich assemblage of fossils, including foraminifers,
stromatoporoids, corals, brachiopods, crinoids and calcareous
algae. Sediments of this type were predominantly accumulated
along the slopes of the Kama—Kinel trough system (Fig. 1c).
Off-reef carbonate and mud ramps consist of bioturbated
limestones and mudstones with diverse benthic assemblages.
In some cases, the carbonate successions are characterised by
stratigraphic incompleteness and gaps.

During the Late Eifelian to Late Givetian, the accumulation
of carbonate sediments was restricted to local troughs and was
closely related to the accumulation of black shales. Sustainable
accumulation of carbonate sediments began at the Early
Frasnian and continued until regional regression in the Early
Visean (Silantiev et al., 2023, 2024). Limestones containing
brachiopods and crinoids usually are rich in conodonts; in
limestones of other types, conodonts are rare or absent.

2.3 Siliciclastic Sediments

These were accumulated from the late Early Devonian
(Emsian) to Early Late Devonian (Frasnian) and, nowadays,
are represented by well-sorted sandstones and siltstones
interbedded with mudstones. The thicknesses range from
hundreds of metres in the troughs to tens of metres in
uplifted areas of the tectonic arches. Marine fossils, including
conodonts are rare, but various ichnofossil assemblages reveal
the marine origin of these sediments (Silantiev et al., 2022,
2024; Miftakhutdinova, 2023).
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Fig. 2. Main types of sedimentation and completeness of the Devonian succession within Volga—Ural petroleum province. The position of the
studied samples is shown. The data on sedimentation are updated from Kabanov et al. (2023a, 2023b). The width of the columns indicates the
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Fig. 3. Position of the studied samples within the framework of the Middle and Late Devonian conodont zonations and regional stratigraphy.
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3 Materials and Methods

Conodont elements for ¥Sr/*Sr analysis were selected
from the extensive collection of the Geological Museum
of the Kazan Federal University (coll. nos. 34/24, 34/93,
34/97, 34/99, 34/100), originally assembled by Professor
Vyacheslav G. Khalymbadzha (Khalymbadzha, 1981, 2011).
In the 1960-1980s, this collection was used to determine the
conodont zonation of the Volga—Ural petroleum province
(Khalymbadzha, Chernysheva, 1969a, 1969b, 1970a, 1970b).
A total of 19 samples from different stratigraphic levels were
analysed (Fig. 2, 3).

For ¥Sr/%Sr analysis, we used conodonts from carbonate
rocks of different facies composition, both from anoxic
black shales and from shallow oxic carbonate strata. Such
multifacial sampling should not have affected the *’Sr/*¢Sr
values, because the concentration of strontium in seawater is
determined by its residence time and is practically independent
of basin depth and oxic or anoxic environment, i.e. it is
determined only by the rate of strontium input (e.g. from
river water or hydrothermal vents) and removal from water
(e.g. by precipitation in minerals or participation in biological
processes).

The exact stratigraphic position of samples within the
conodont zonation and regional stages was determined
using platform conodonts where available (Supplementary
Material: Figures S1-S5). This approach enabled accurate
correlation of most samples with the International
Chronostratigraphic Chart (Fig. 3). However, four samples
(16-19) lacked platform conodonts and their stratigraphic
positions were inferred from geological data, leading to
greater uncertainty (Fig. 2).

The ¥Sr/*Sr values were measured predominantly from
ramiform elements, which are characterised by a higher
strontium content (Holmden et al., 1996). In addition,
ramiform elements have a smoother surface than platform
conodonts, reducing the retention of extraneous mineral
particles. Conodont elements were extracted from the host
carbonates with acetic acid and were selected manually under
a binocular microscope and cleaned of extraneous mineral
particles where necessary. The selection process took into
account the Conodont Colour Alteration Index (CAI) and the
state of preservation of the conodonts. Only specimens with
a CAI of 2 or less and showing no signs of redeposition, such
as surface erosion or rounding, were selected.

The isotopic composition of Sr in conodonts was studied
using thermal ionisation mass spectrometry. The sample
weight did not exceed ~0.015 g. The chemical preparation was
reduced to dissolution of the sample in 6 M HCl at atmospheric
pressure and a temperature of 110 °C for 10—12 hours. The
resulting solutions were centrifuged and evaporated. Pure
fractions of Sr for mass spectrometric analysis were obtained
by ion exchange chromatography. The separation of Sr from
matrix elements was carried out in 2.4 M HCl medium on ion-
exchange columns filled with 3 mL of Bio Rad W50x8 resin
(200—400 mesh). The procedural blanks contained less than
0.1 ng of Sr. The Sr isotopic composition was analysed on a
Sector 54 Multicollector Thermionisation Mass Spectrometer
(Micromass, UK). Measurements were performed on oxidised
tantalum in single-filament mode with a current of centre
filament of 2.2-2.7 A, corresponding to a temperature range
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of 1380—1450 °C. The measurement experiment included the
registration of 100 mass-spectra, which provided convergence
of results within the analysis no worse than 0.002% (2SE).
The accuracy of the mass spectrometric measurements of the
87Sr/%6Sr ratio in the samples was controlled by systematic
measurements of the international standard of Sr isotopic
composition (SRM-987, NIST, USA). Over the period of
analysis, the value of ¥St/*Sr for the SRM-987 standard was
0.710246 + 0.000016 (n =10, 2SD).

In addition to the standard control, the accuracy of
the ¥Sr/%Sr values was checked on a sample from the
lower Kungurian (Cisuralian) of the Mechetlino reference
section. The 2*Pb/>*8U age of 283.5 = 0.6 Ma for this sample
(Supplementary Material, Table S1, Fig. S3.9) was estimated
with high accuracy using a combination of biostratigraphic
and radioisotope geochronological methods (Schmitz,
Davydov, 2012). The ¥Sr/*Sr value of this sample is
0.707394 + 0.000010 and fits well with the global strontium
curve for the Early Kungurian.

The ¥Sr/*°Sr data were used to compute a Loess model
similar to that used by McArthur et al. (2001), with the
smoothing algorithm developed by Cleveland (1979) and
Cleveland and Devlin (1988). The Loess algorithm employs
local regression, a statistical method for fitting smoothing
curves without prior assumptions about their shape. The curve
was generated using R, an open-source statistical software
environment (R Core Team. A language and environment for
statistical computing. R Foundation for Statistical Computing,
https://www.R-project.org/).

4 Results and Discussion

The *’Sr/*Sr values of the Devonian conodonts from
the central part of the Volga—Ural petroleum province,
along with the Loess trend line, are presented in Figure 4
and in Supplement, Table S1. Sample 19 (Lower Devonian,
Biyian regional stage) shows an outlier value, probably due
to diagenetic alteration of the conodont material, and is
excluded from further discussion. We compare our results
with the global Devonian strontium curve derived from
brachiopods (Van Geldern et al., 2006) and referenced in the
recent Geologic Time Scale volume (McArthur et al., 2020).
The overall ¥Sr/*Sr values range from 0.707780 = 0.000012
to 0.708238 + 0.000018, which are broadly in line with the
global trend.

The data clearly reveal two distinct groups of samples,
with the first group showing average ¥’Sr/*Sr values between
0.7077 and 0.7079, and the second group having values in
the range of 0.7081 to 0.7082. The lower ¥’Sr/*Sr values
(0.707780-0.707960) are characteristic of the Middle
Devonian and Early Frasnian conodonts, whereas the higher
values (0.708103—0.708238) are associated with the late
Frasnian and Famennian conodonts. The reduced ¥'Sr/*Sr
values in the middle and upper Eifelian can be attributed
to increased input of Sr from mantle sources into the world
ocean and/or reduced weathering of ¥Sr-rich crustal rocks
(McArthur et al., 2020).

During the Givetian, a gradual increase in the ¥Sr/*Sr ratio
is observed. This positive shift, more clearly recorded in the
upper Givetian, is generally consistent with the brachiopod-
derived strontium curve (Van Geldern et al., 2006).
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Fig. 4. ¥Sr/*Sr values and Loess trend line for Devonian conodonts from the central part of the Volga—Ural petroleum province compared with
the strontium curve for brachiopods (Van Geldern et al., 2006)
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The positive ¥’Sr/*Sr excursion in the middle to late
Givetian can be interpreted as a consequence of the Acadian—
Eovariscan orogeny, expanding the global area of rock
weathering and increasing the release of #’Sr from crustal rocks
into the world ocean (Van Geldern et al., 2000).

The ¥Sr/*Sr values continue to rise in the Early Frasnian,
reaching higher levels during the late Frasnian and Early
Famennian. The plateaus of elevated values in this stratigraphic
interval generally correspond well with the trend observed in
the brachiopod-derived strontium curve (Van Geldern et al.,
2006). However, the conodont-derived strontium curve shows
slightly higher values than the brachiopod-derived curve, a
pattern also noted by other researchers (e.g. Ebneth et al.,
1997; Zaky et al., 2019).

The global ¥’Sr/*Sr curve for the Middle—Upper Devonian
is mainly based on data obtained from brachiopod shells
(Van Geldern et al., 2006; McArthur et al., 2020, and others),
although the Sr isotopic composition of Devonian conodonts
has also been extensively studied (e.g., John et al., 2008;
Woodard et al., 2013; Song et al., 2015; Le Houedec et
al., 2017; Emsbo et al., 2018). Conodont elements exhibit
relatively high chemical stability and low permeability of
hard tissues which lack open pores. During biomineralisation,
strontium is gradually incorporated into conodont bioapatite,
resulting in a regular distribution of Sr within the hard tissues
(Zhuravlev, Schevchuk, 2017). The Sr concentrations in the
lamellar and paralamellar tissues of conodont elements show
oscillations correlated with the periodic growth of the lamellae
(Zhuravlev, Shevchuk, 2017; Shirley et al., 2018). The average
Sr concentration in conodont element depends on its growth
rate, stage of ontogeny, and, probably, taxonomy (Shirley
et al., 2018). Despite the complex Sr distribution pattern in
conodont elements the ¥’Sr/*Sr ratios clearly show very little
variation both within a sample and a conodont element. Thus,
it is supposed that Sr-isotope signal in conodont elements
is independent from conodont taxonomy and the stage of
ontogeny, and ¥’Sr/*Sr ratios in conodont elements directly
reflect those in the ancient sea water (Bertram et al., 1992;
Terrill et al., 2022). There is no clear evidence of diagenetic
exchange of Sr between well-preserved conodont elements
and the host rock or pore water (Zhuravlev, Schevchuk, 2019).
However, conodonts can absorb manganese (Mn) and rare
earth elements (REE) from clayey host rocks (Bertram et al.,
1992; Bright et al., 2009; Trotter et al., 2016; Zhuravlev, 2023).

Several recent publications have examined the differences
in the Sr isotopic compositions of conodonts and brachiopods
(Zaky et al., 2019; Woodard et al., 2013; Song et al., 2015).
Specifically, conodonts from the Bird Spring Formation
(Carboniferous) have higher levels of the radiogenic isotope
Sr than brachiopods do (Zaky et al., 2019). The authors
suggest that this discrepancy may result from diagenetic
alterations in the Sr isotopic composition of conodonts.
However, such variations could also be caused by regional
or local factors. In particular, this assumption is supported
by the Permian—Triassic Sr isotope record of conodonts
and brachiopods, where the Sr isotope values are in good
agreement (Song et al., 2015).

The ¥Sr/%Sr values obtained for the conodonts from the
central part of the Volga—Ural petroleum province are largely
consistent with those of Devonian brachiopods which are
incorporated into the global curve (Fig. 4). However, in some
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conodont samples, the ¥St/*Sr values show slight deviations.
It is unlikely that only diagenetic processes affecting the
conodont elements can explain all these discrepancies.

The lower ¥Sr/%Sr values in the Mosolian (Eifelian) and
late Timanian—Sargaevian (Early Frasnian) could have been
caused by the extensive transgression as well as volcanic and
hydrothermal activity in the Ural palacoocean, which was
connected with the Kama—Kinel trough system. In contrast,
the higher *Sr/%Sr values in the Late Frasnian—Famennian
could correspond to the enhanced weathering of the western
part of the East European Platform.

Our results demonstrate that the general trend of the
Devonian ¥Sr/*Sr curve for conodonts from the central part
of the Volga—Ural petroleum province aligns with the trends
of strontium curves for brachiopods, carbonate rocks, and
conodonts from other regions (Ebneth et al., 1997; Diener et
al., 1996) and with the global ¥St/*Sr curve (Van Geldern et
al., 2006; McArthur et al., 2020) complementing these data
with regional variations.

Conclusion

1. The ¥Sr/*Sr curve for the conodonts from the central
part of the Volga—Ural petroleum province aligns with the
global strontium curve, indicating a connection between this
region and the global ocean throughout the Devonian.

2. The lower *Sr/*Sr values in the Eifelian and Early
Frasnian could have been caused by the extensive transgression
as well as volcanic and hydrothermal activity in the Ural
palaeoocean, which was connected with the Kama—Kinel
trough system. In contrast, the higher ¥’Sr/**Sr values in the
Late Frasnian—Famennian could correspond to the enhanced
weathering of the western part of the East European Platform.

3. Future research could focus on investigating the causes
of discrepancies in Sr isotope values between brachiopods
and conodonts.

Supplementary Materials

Table S1: ¥Sr/*Sr values, stratigraphy of the samples and
conodont assemblages using for age determination

Figures S1-S5: Conodont assemblages used for
determining the stratigraphic age of the samples
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Supplementary Material

Table S1
7S1/%Sr values, stratigraphy of the samples and conodont assemblages using for age determination
SaIrlri)ple, anll’ Stratigraphy Conodont assemblages YSr/*Sr +26

1 . Elet51an—Leb§dyanlan, rhomboidea Palfnatol.epis. minuta subtilis, Palmatolepis minuta minuta, Pa. glabra glabra, Pa. 0.708162-0.000010
Zone — marginifera Zones lobicornis (Fig. S1: 1-7)

2 5 upper Zadonian, crepida Zone Palmatolepis minuta subtilis, Pa. glabra glabra, Pa. minuta minuta, Pa. superlobata 0.708158+0.000010
(upper part) superlobata, Pa. marginifera, Polygnathus nodocostata nodocostata (Fig. S1: 8-10) ' '

3 7 I%:S[;)man, crepida Zone (lower Palmatolepis sp. (Fig. S1: 11) 0.70811320.000008

4 ) Volgogradian, riangularis Zone Pa.lmato‘lepls tenuipunctata, Pa. minuta, Pa. regularis, Pa. superlobata superlobata ~0.7081

(Fig. S1: 12-16)

5 2 lzogrlzr Volgogradian, triangularis Palmatolepis triangularis, Pa. superlobata superlobata, Pa. minuta (Fig. S2: 1-3) 0.70817440.000020

6 ] Evlanovian—Livenian, juntianensis | Polygnathus aspelundi, Po. cf. costulatus, Po. komi, Po. cf. krestovnikovi, Po. 0.708103-0.000010
Zone — linguiformis Zone lodinensis, Po. pennatus, Po. politus, Po. webbi (Fig. S5: 1-10) ' '

7 Voronezhian—Evlanovian,

1 elegantula-semichatovae Zone — Ancyrodella nodosa, An. ioides, Pa. sp. (Fig. S2: 4-5) 0.708106%0.000007

Jjuntianensis Zone

8 4 low§r Rechitsian, elegantula— Palmatolepis hassi, Pa. gigas gigas, Pa. aff. gyratus, Pa. jamieae, Pa.nasuta, Pa. 0.708124:0.000017
semichatovae Zone plana, Polygnathus sp. (Fig. S3: 1-8)

9 p | lower Rechitsian, elegantula- Polygnathus sp., Po. ljaschenkoae, Palmatolepis aff. kireevae (Fig. S2: 6-7) 0.708104::0.000010
semichatovae Zone
upper Semilukian, An.

10 4 ancyrognathoideus—Pa. orbicularis | Palmatolepis proversa, Pa. cf. punctate, Pa. aff. subrecta, Ancyrodella nodosa (Fig. 070823820 000018

Zone — Pa. mucronata—amplificata
Zone

S2: 8-11)




11 lower Semilukian, Po. efimovae— . . . .
Pa. punctate Zone (lower part) Polygnathus aff. grandidentatus, Po. lingulatus (Fig. S2: 12—13) 0.707937+0.000008
12 upper Sargaejwan, An. alata—M. Ancyrodglla pristina, An. rotundiloba alata, Mesotaxis asymmetricus, Klapperina 0.708162+:0.000030
bogoslovskyi Zone ovalis (Fig. S2: 14-15)
13 upper Sargaevian, An. rotundiloba—
africana Zone — An. alata— Mesotaxis asymmetricus, M. falsiovalis, Ancyrodella rotundiloba alata (Fig. S4: 1-6) 0.707960+0.000011
M. bogoslovskyi Zone
14 middle Sargaevian; . . . . P )
An. rotundiloba-africana Zone Icriodus nodosus, Ic. symmetricus, Ic. expansus, Mesotaxis falsiovalis (Fig. S4: 7-11) 0.707948+0.000008
15 Timanian, Po. pennatus—Po. Icriodus alternatus, Ic. nodosus, Polygnathus alatus, Po. ljaschenkoi, Po. dubius, Po. 0.70789620.000015
ljaschenkoi Zone webbi, Ancyrodella pristina, A. binodosa (Fig. S4: 12—15) : :
16 upper Givetian, Mullinian Ancyrodella prima (Fig. S4: 16) 0.707918+0.000008
17 Eifelian, Mosolovian Polygnathus linguiformis alveolus, Pseudobipennatus cf. ziegleri (Fig. S5: 12) 0.707780+0.000012
18 Eifelian Polygnathus aff. pseudofoliatus (Fig. S5: 11) 0.707798+0.000012
19 Eifelian, Biyian ramiform elements 0.708568+0.000020
20 lower Kungurian (control sample) | Neostreptognathodus lectulus (Fig. S3: 9) 0.707394+0.000010
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Figure S1. Famennian conodonts: 1, 3—4. Palmatolepis lobicornis Schiilke, well no. 7, Eletsian—Lebedyanian,
rhomboidea Zone — marginifera Zone; 2, 5-6. Palmatolepis glabra glabra Ulrich et Bassler, well no. 7, Eletsian—
Lebedyanian, rhomboidea Zone — marginifera Zone; 7. Palmatolepis minuta minuta Branson et Mehl, well no. 7,
Eletsian—Lebedyanian, rhomboidea Zone — marginifera Zone; 8. Palmatolepis sp., well no. 2, upper Zadonian,
crepida Zone; 9—10. Palmatolepis glabra glabra Ulrich et Bassler, well no. 2, upper Zadonian, crepida Zone; 11.
Palmatolepis sp., well no. 7, Zadonian, crepida Zone; 12. Palmatolepis aff. regularis Cooper, well no. 2,
Volgogradian, triangularis Zone; 13. Palmatolepis tenuipunctata Sannemann, well no. 2, Volgogradian,
triangularis Zone; 14. Palmatolepis cf. superlobata superlobata Branson et Mehl, well no. 2, Volgogradian,
triangularis Zone; 15. Palmatolepis superlobata superlobata Branson et Mehl. well no. 2, Volgogradian,
triangularis Zone; 16. Palmatolepis minuta Branson et Mehl, well no. 2, Volgogradian, triangularis Zone.



Lower part of the Volgogradian Voronezhian-Evlanovian

8751/ %8s 0.708174420 875/ 885r 0.708106+7

Lower part of the Rechitsian

875/ 8851 0.708104+10 - 875r/ 51 0.708238+18

Lower part of the Semilukian Upper part of the Sargaevian

%5/ ®sr 0.70793748 875/ 865, 0.708162+30

-

; f = o3
{ / :

Y

Figure S2. Famennian and Frasnian conodonts. 1, 3. Palmatolepis cf. superlobata superlobata Branson et Mehl,
well no. 2, lower Volgogradian, triangularis Zone; 2. Palmatolepis triangularis Sannemann, well no. 2, lower
Volgogradian, triangularis Zone; 4. Ancyrodella ioides Ziegler Morphotype 1, well no. 1, Voronezhian—Evlanovian,
elegantula—semichatovae Zone — juntianensis Zone; 5 — Palmatolepis sp., well no. 1, Voronezhian—Evlanovian,
elegantula—semichatovae Zone — juntianensis Zone; 6. Palmatolepis aff. ljaschenkoae Ovnatanova, well no. 2,
lower Rechitsian, elegantula—semichatovae Zone; 7. Palmatolepis aff. kireevae Ovnatanova, well no. 2, lower
Rechitsian, elegantula—semichatovae Zone; 8. Palmatolepis cf. punctata (Hinde), well no. 4, Upper Semilukian, An.
ancyrognathoideus—Pa. orbicularis Zone — Pa. mucronata—amplificata Zone,; 9—-10. Palmatolepis proversa Ziegler,
well no. 4, upper Semilukian, An. Ancyrognathoideus—Pa. orbicularis Zone — Pa. mucronata—amplificata Zone;
11. Ancyrodella nodosa Ulrich et Bassler, well no. 4, upper Semilukian, An. Ancyrognathoideus—Pa. orbicularis
Zone — Pa. mucronata—amplificata Zone; 12. Polygnathus lingulatus Ovnatanova, well no. 6, lower Semilukian, Po.
Efimovae—Pa. punctate Zone. 13. Polygnathus aff. grandidentatus Aristov, well no. 6, lower Semilukian, Po.
efimovae—Pa. punctate Zone; 14-15. Ancyrodella pristina Khalymbadzha et Chernysheva, well no. 5, upper
Sargaevian, An. alata—M. bogoslovskyi Zone.



Lower part of the Rechitsian

8751/ 885 0.708124+17

Basement of the Kungurian

8751/ 8851 0,707394+10

Figure S3. Frasnian conodonts. 1, 3. Palmatolepis hassi Muller et Muller, well no. 4, lower Rechitsian, elegantula—
semichatovae Zone; 2. Palmatolepis jamieae Ziegler et Sandberg, well no. 4, lower Rechitsian, elegantula—
semichatovae Zone; 4. Palmatolepis nasuta Muller, well no. 4, lower Rechitsian, elegantula—semichatovae Zone; 5—
6. Palmatolepis plana Ziegler et Sandberg, well no. 4, lower Rechitsian, elegantula—semichatovae Zone, 7.
Palmatolepis aff. gyratus Kuzmin et Melnikova, well no. 4, lower Rechitsian, elegantula—semichatovae Zone; 8.

Polygnathus sp., well no. 4, lower Rechitsian, elegantula—semichatovae Zone, 9. Neostreptognathodus lectulus
Chernykh, Mechetlino section, layer 12, lower Kungurian.
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Figure S4. Frasnian and Famennian conodonts. 1. Mesotaxis falsiovalis Sandberg, Ziegler, Klapper, well no. 3,
upper Sargaevian, An. rotundiloba—africana Zone — An. alata—M. bogoslovskyi Zone,; 2-3. Mesotaxis asymmetricus
(Bischoff et Ziegler), well no. 3, upper Sargaevian, 4An. rotundiloba—africana Zone — An. alata—M. bogoslovskyi
Zone; 4-5. Ancyrodella rotundiloba alata Glenister et Klapper, well no. 3, upper Sargaevian, An. rotundiloba—
africana Zone — An. alata—M. bogoslovskyi Zone,; 6. Mesotaxis falsiovalis Sandberg, Ziegler et Klapper, well no. 3,
upper Sargaevian, An. rotundiloba—africana Zone — An. alata—M. bogoslovskyi Zone; 7. Icriodus nodosus (Hiddle),
well no. 6, middle Sargaevian; An. rotundiloba—africana Zone, 8. Icriodus symmetricus Branson et Mehl, well no.
6, middle Sargaevian; An. rotundiloba—africana Zone; 9. Icriodus expansus Branson et Mehl, well no. 6, middle
Sargaevian; An. rotundiloba—africana Zone, 10—11. Mesotaxis falsiovalis Sandberg, Ziegler et Klapper, well no. 6,
middle Sargaevian; An. rotundiloba—africana Zone; 12-13. Icriodus alternatus Branson et Mehl, well no. 5,
Timanian, Po. pennatus—Po. ljaschenkoi Zone; 14. Polygnathus alatus Huddle, well no. 5, Timanian, Po. pennatus—
Po. ljaschenkoi Zone; 15. Polygnathus ljaschenkoi Kuzmin, well no. 5, Timanian, Po. pennatus—Po. ljaschenkoi
Zone; 16. Ancyrodella prima Khalymbadzha et Chernysheva, well no. 5, Upper Givetian, Mullinian.
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Figure S5. Eifelian and Frasnian conodonts: 1. Polygnathus politus Ovnatanova, well no. 8, Evlanovian—Livenian,
Jjuntianensis Zone — linguiformis Zone; 2-3. Polygnathus komi Kuzmin et Ovnatanova, well no. 8, Evlanovian—
Livenian, juntianensis Zone — linguiformis Zone; 4. Polygnathus cf. lodinensis Polsler, well no. 8, Evlanovian—
Livenian, juntianensis Zone — linguiformis Zone; 5. Polygnathus cf. costulatus Aristov, well no. 8, Evlanovian—
Livenian, juntianensis Zone — linguiformis Zone; 6. Polygnathus cf. krestovnikovi Ovnatanova, well no. 8,
Evlanovian—Livenian, juntianensis Zone — linguiformis Zone; 7. Polygnathus cf. aequalis Klapper et Lane, well no.
8, Evlanovian—Livenian, juntianensis Zone — linguiformis Zone; 8. Polygnathus politus Ovnatanova, well no. 8§,
Evlanovian—Livenian, juntianensis Zone — linguiformis Zone; 9. Polygnathus aff. pennatus Hinde, well no. 8,
Evlanovian—Livenian; 10. Polygnathus cf. webbi Stauffer, well no. 8, Evlanovian—Livenian, juntianensis Zone —
linguiformis Zone; 11. Polygnathus aff. pseudofoliatus Wittekindt, well no. 9, Eifelian; 12. Polygnathus cf.
linguiformis alveolus Weddige, well no. 9, Mosolovian.
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OPUTI'MHAJIBHASL CTATbS

CTpoHnueBasi H30TONMHAA CTPAaTUrPadus cpeIHero U BepXHero JeBOHa:
AAHHbIE 110 KOHOJXOHTAM U3 HEHTPAJbHOMN YacTu BoJsro-Ypasabckoi

HeTEera30HOCHOM NMPOBUHIIMHU

J.K. Hypeanues', I'M. Cyneamynnuna’, H.I" Hypeanuesa', B.B. Cunanmoes?", A.B. JKypaenes®,
A.B. Yyeaes®, /. H. Mugpmaxymounoea'?, IO.B. I'onvyman®, b.U. I'apees’

'Kazanckui ([pusondicckuit) pedepanvhviil ynusepcumem, Kasans, Poccus

2@unuan Kazanckozo (Ilpusonsicckozo) gedepanvrozo ynusepcumema 6 2opooe [icuzake, oicusax, Yzoexucman
SUnemumym 2eonoeuu ®UL] Kovu Hayunwiii Llenmp Ypanscroeo Omoenenus PAH, Coikmouiskap, Poccust
‘Uncmumym eeonozuu pyonvix mecmopoxcoeHnuil, nempozpagpuu, munepanrozuu u ceoxumuu PAH, Mocksa, Poccus
*Omeemcmeennviti agmop: Bradumup Braoumuposuy Cunanmoes, e-mail: Viadimir.Silantiev@kpfu.ru

IIpencraBieHbl MepBbie JaHHBIE 110 U30TOIMMHOMY COCTaBY
ctponiyst (87Sr/86Sr) 11st cpesiHe- ¥ BEPXHEICBOHCKUX OTIOKCHHN
LEeHTpaJIbHOW YacTH Bonro-Ypanbsckoii HeTera3oHOCHO# IIpOBHH-
I[UH, TIOJyYCHHbIE Ha OCHOBE aHain3a paMH(OPMHBIX JIEMEHTOB
KOHOJIOHTOBBIX anmnaparoB. CtpaTurpaduueckoe rnojoxeHue 60Ib-
IMIMHCTBA 00PA3I0B OIPE/EICHO MO COISPIKAIIMMCS B HUX IUIaT-
(hOpMEHHBIM KOHOJIOHTaM. 3HaueHUs 87Sr/86Sr neMOHCTPUPYIOT
XOPOILYIO COIIACOBAHHOCTH C II00ALHONW CTPOHIMEBON KPHBOM,
YTO yKa3blBaeT Ha YCTONYMBYIO CBSI3b MCCIIEIYEMOIO peruoHa
¢ MUpOBBIM OKEaHOM Ha IPOTSHKEHUH CPEJTHETO M ITO3/IHETO JICBOHA.
[Tomy4eHHbIe JaHHbIE TIOATBEPIKIAIOT BEICOKYIO CTETICHB CTPaTHIPa-
(ryecKoi MOJHOTHI PETHOHAIBHOTO pa3pe3a, HeCMOTPsI Ha MHOTO-
YHCJICHHBIE TIEPEPBIBBI 0CAJKOHAKOIUICHHSI U 4acTOe Yepe0BaHNe
JIOMaHHKOBBIX, TEPPUTCHHBIX M KAPOOHATHBIX OTIIOKCHHH.

KiroueBbie ciioBa: KOHOJOHTBI, JIEBOH, M30TOIBI CTPOHIUS
(87Sr/86Sr), Bomnro-Ypainbckast HeTera3oHOCHast IPOBHHIHS

®unancupoanue/biarogapuocrn

PaGota yactuyno npoduHancupoBaHa B pamkax Crparernieckon
HpOrpaMMbl akajemMuuaeckoro auaepersa Kazaunckoro denepanbHoro
yuuBepcurera (PRIORITY-2030). Buocrparurpaguueckoe uc-
cieoBaHne (PMHAHCHPOBAIOCH 3a CUET CYOCHIMH, BbIJICICHHON
Kazanckomy ¢QenepanbHOMY YHHBEPCUTETY HA TOCYIapCTBEHHBIN
npoext FZSM-2023-0023.

M5l BbIpakaeM IIyOOKyro OJIaroapHOCTh PEJaKTOpaM M aHo-
HUMHBIM PELICH3eHTaM, YbH KOMMEHTApHH U MPEIOKEHHS 3HAYH-
TEIBHO YIYYIIHIIN CTaThIO.

Jast uutupoBanus: Nurgaliev D.K., Sungatullina G.M.,
Nourgalieva N.G., Silantiev V.V., Zhuravlev A.V., Chugaev A.V.,
Miftakhutdinova D .N., Goltsman Yu.V., Gareev B.I. (2025).
Strontium Isotope Stratigraphy of the Middle—Upper Devonian: Data
for the Conodonts from the Central Part of the Volga—Ural Petroleum
Province. Georesursy = Georesources, 27(4), pp. 107-118. https://
doi.org/10.18599/grs.2025.4.11

Caenenusi 00 aBTopax

Jlanuc Kapnosuy Hypeanueg — OKTOp reoil.-MUHEpaJL. HayK, Po-
(eccop, MPOPEKTOP MO HANPABICHUSIM HE(TEra30BbIX TEXHOJIOTHH,
IIPUPOJOIIOIb30BaHus U Hayk o 3emute, Kasanckuii (IIpuBommkckuii)
(benepaiabHbIl yHUBEPCUTET

Poccust, 420008, Kazans, yi. Kpemnesckas, a. 18

e-mail: Danis.Nourgaliev@kpfu.ru

Iyzane Mapcosna Cyneamynnuna — KaHAXJAT T€OJ.-MUHEPAIL.
HayK, JIOLEHT Kaepbl IAJICOHTOIOTHH U cTpaTurpadun, THcTHTYT
TeoJIOruY U HeyTera3oBhIX TexHoorui, Kasanckuit (ITpuBomkckuii)
(benepaibHBIl yHUBEPCUTET

Poccust, 420008, Kazans, yi. Kpemnesckas, a. 18

e-mail: Guzel.Sungatullina@kpfu.ru

GEORESURSY / GEORESOURCES

Hypus I'asazoena Hypeanuesa — NTOKTOp Te0ll.-MUHEpaJl. HayK,
npodeccop kadenpsl reosioruu HedTH u raza, MHCTUTYT reosiornu
n HedreraszoBbix TexHojorui, Kazanckuii (IIpuBomkckuit) demne-
paJIbHBIN YHUBEPCUTET

Poccust, 420008, Kazans, yi. Kpemnesckas, . 18

e-mail: nouria.nourgalieva@kpfu.ru

Braoumup Braoumuposuu Cunanmveé — TOKTOP TeOJ.-MUHE-
pai. Hayk, npodeccop, 3aBeayIomui kadeapoil maaeoHTo- JIOTHU
u crparurpaduu, MHCTUTYT reonoruu U HeTerazoBbIX TEXHO-
noruii, Kazauckuit (ITpuBomkckuii) denepanbHblil yHUBEPCHUTET;
npodeccop, Punnan Kazanckoro (IIpuBomxkckoro) demaepaabHOTO
yHUBepcuTeTa B ropoze Jxusaxe

Poccust, 420008, Kazans, yi. Kpemnesckas, a. 18

e-mail: Vladimir.Silantiev@kpfu.ru

Anopeii Braoumuposuy JKypasnee — KaHIUIAT T€OJ.-MHHEPAIL.
HayK, CTapIlnil HAyYHBIH COTPYIHUK Ta00paTopuu cTpaturpadum,
Hucruryt reonorun ®UL[ Komu Hayunsiii Lientp Ypanbckoro
Otnenenus PAH

Poccust, 167982, CeixtbiBKap, yiu. IlepBomaiickas, a. 54

e-mail: avzhuravlev@geo.komisc.ru

Anopeii Braoumuposuy Yyeaes — TOKTOP Te0N.-MUHEPAIl. HAyK,
BEYIIUH HAYYHBII COTPYTHUK, TaOOPATOPHs H30TOITHOM T€OXUMUH
U T€OXPOHOJIOTUH, VIHCTUTYT Te0NOrHH PYAHBIX MECTOPOKACHHH,
nerporpaduu, MuHepajIoruu u reoxumur PAH

Poccus, 119017, Mocksa, CtapoMOHETHBIH 11ep., 1. 35

e-mail: vassachav@mail.ru

Junapa Haouposna Mugmaxymounosa — KaHIUIAT TEON.-MHU-
HepaJl. HayK, JOICHT Kadeapsl MaJCOHTOIOTHU U CTpaTUrpadum,
HHcTUTyT reosoruu U HedTera3oBbix TexHojoruil, Kasanckuii
(ITpuBoimkckuit) denepanbHbIil yHUBEpCUTET; noueHT, Ounnan
Kazanckoro (ITpuBomxckoro) ¢enepaibHOr0 YHUBEPCHTETA B IO-
pone [xuzaxe

Poccust, 420008, Kazans, yi. Kpemnesckas, a. 18

e-mail: Dinara.Miftakhutdinova@kpfu.ru

IOpuii Braoumuposuu I'onbyman — KaHAUIAT TEOJ.-MHHEPAI.
HayK, CTapIIMi HAYYHBII COTPYIHUK J1a00PAaTOPHH H30TOITHOH reo-
XHMHH U TEOXPOHOJIOTHH, IHCTUTYT I'e0JI0ruH PYJHBIX MECTOPOXK-
JIeHUH, eTporpadun, MHHepanoruu u reoxumun PAH

Poccust, 119017, MockBa, CtapoMOHETHBIH 11ep., 1. 35

e-mail: isotope85@mail.ru

bynam Upexosuu I'apees — NMpeKTop HAy4YHO-UCCIIEA0BATEIb-
ckoro nentpa I'eoJlab, HCTUTYT reosoruu 1 HeTEra3oBbIX TeX-
Honorui, Kazanckuii (ITpuBosmkeknit) enepaibHblii yHUBEpCUTET

Poccust, 420008, Kazans, yi. Kpemnesckas, a. 18

e-mail: BlGareev@kpfu.ru

Cmamws nocmynuna é pedaxyuio 06.03.2025;
Ipunsma k nyonuxayuu 14.05.2025; Ony6auxosana 20.12.2025



