Evolution and Formation Conditions of Petroleum Potential of the Barents-North Kara Sea Shelf Based on Basin Modelling
https://doi.org/10.18599/grs.2025.2.8
Abstract
Kara Sea shelf allow establishing of the modern stratigraphic and basin model of the Barents Sea and North Kara Sea Basins. The common history of the geological evolution of these basins began in the Early Paleozoic. The identification of erosional truncation contributes reconstruction of the paleoprofiles and restoring the thickness of eroded sediments, which were considered in the basin model.
Basin modeling has shown that the timing of generation, migration and accumulation of hydrocarbons are different depending on the history of the first-order tectonic elements development. No significant flows of hydrocarbons between first-order structural elements were defined.
Lower Paleozoic source rocks influenced great on the emerging of oil accumulations in the North Kara Sea Basin.
Despite the low thermal maturity of Upper Jurassic source rocks, the use of an individual kinetic spectrum of kerogen destruction leads to earlier and faster generation of hydrocarbons in comparison with standard kinetic spectra for type II kerogen.
The intrusions influenced the generation of hydrocarbons by Mesozoic source rock to varying degrees. Intrusions influenced on generation greater in the Lower-Middle Jurassic source rocks and less in the Upper Jurassic and Early Cretaceous source rocks. For the Triassic source rocks, the impact of intrusions has a negative effect, due to the rapid “burning” of the petroleum potential, as well as an increase of gas generation due to secondary cracking.
About the Authors
T. O. KolesnikovaRussian Federation
Tatiana O. Kolesnikova – Postgraduate Stident, Petroleum Geology Department
1, Leninskie gory, Moscow, 119234
A. V. Mordasova
Russian Federation
Alina V. Mordasova – Cand. Sci. (Geology and Mineralogy), Researcher, Petroleum Geology Department
1, Leninskie gory, Moscow, 119234
A. A. Suslova
Russian Federation
Anna A. Suslova – Cand. Sci. (Geology and Mineralogy), Leading Researcher, Petroleum Geology Department
1, Leninskie gory, Moscow, 119234
A. V. Stoupakova
Russian Federation
Antonina V. Stoupakova – Dr. Sci. (Geology and Mineralogy), Professor, Head of the Petroleum Geology Department, Head of the Petroleum Research Institute
1, Leninskie gory, Moscow, 119234
M. A. Bolshakova
Russian Federation
Maria A. Bolshakova – Cand. Sci. (Geology and Mineralogy), Leading Researcher, Petroleum Geology Department
1, Leninskie gory, Moscow, 119234
E. A. Krasnova
Russian Federation
Elizaveta A. Krasnova – Cand. Sci. (Geology and Mineralogy), Senior Researcher, Petroleum Geology Department; Senior Researcher
1, Leninskie gory, Moscow, 119234
R. S. Sautkin
Russian Federation
Roman S. Sautkin – Cand. Sci. (Geology and Mineralogy), Senior Researcher, Petroleum Geology Department
1, Leninskie gory, Moscow, 119234
R. M. Gilaev
Russian Federation
Rinard M. Gilaev – Cand. Sci. (Geology and Mineralogy), Senior Researcher, Petroleum Geology Department
1, Leninskie gory, Moscow, 119234
I. V. Kuvinov
Russian Federation
Igor V. Kuvinov – Engineer, Petroleum Geology Department
1, Leninskie gory, Moscow, 119234
A. A. Gilmullina
Norway
Albina A. Gilmullina – PhD (Geology and Mineralogy), Postdoctoral Fellow, Department of Earth Science
Allégaten 41, Bergen, 5007
K. O. Osipov
Russian Federation
Konstantin O. Osipov – Engineer, Petroleum Geology Department
1, Leninskie gory, Moscow, 119234
References
1. Basov V.A., Vasilenko L.V., Viskunova K.G., Korago E.A., Korchinskaya M. V., Kupriyanova N.V., Povysheva L.G., Preobrazhenskaya E.N., Pchelina T.M., Stolbov N.M., Suvorova E.B., Suprunenko O.I., Suslova V.V., Ustinov N. V., Ustritsky V.I., Fefilova L.A. (2009). Evolution of sedimentation environments of the Barents-North Kara paleobasin in the Phanerozoic. Oil and gas geology. Theory and practice, 4(1), pp. 1–44. (In Russ.)
2. Bolshakova M.A. (2008). Geological and geochemical conditions of the petroleum potential of the Shtokman-Lunin megasaddle. Cand. Geol. and Min. sci. Diss. Moscow: MSU, 146 p. (in Russ.)
3. Bro E.G. (1992). Oil and gas complexes in Paleozoic and Mesozoic deposits on the shelf of the Barents Sea. Oil and gas potential of the BarentsKara shelf. St. Petersburg: VNIIOkeanogeologiya, pp. 17–37. (in Russ.)
4. Brunstad H. & Rønnevik H.C. (2022). Loppa High Composite TectonoSedimentary Element, Barents Sea. Geological Society, London, Memoirs 57. https://doi.org/10.1144/M57-2020-3
5. Corfu F., Polteau S., Planke S., Faleide J.I., Svensen H., Zayoncheck A., Stolbov N. (2013). U–Pb geochronology of Cretaceous magmatism on Svalbard and Franz Josef Land, Barents Sea Large Igneous Province. Geological Magazine, 150(6), pp. 1127–1135. https://doi.org/10.1017/s0016756813000162.
6. Dallmann W. (2015). Geoscience Atlas of Svalbard. Norsk Polarinstitutt Rapportserie148, 292 p.
7. Dymov V.A., Kachurina N.V., Makariev A.A., Makarieva E.M. et al. (2011). State geological map of the Russian Federation. Scale 1:1 000 000 (third generation). Sheet U-41–44 – Franz Josef Land (Eastern Islands). Explanatory letter. St. Petersburg: VSEGEI Card Factory, 220 p. (in Russ.)
8. Gilmullina A., Klausen T.G., Doré A.G., Rossi V.M., Suslova A., & Eide C.H. (2022). Linking sediment supply variations and tectonic evolution in deep time, source-to-sink systems—The Triassic Greater Barents Sea Basin. Bulletin, 134(7–8), pp. 1760–1780. https://doi.org/10.1130/B36090.1
9. Gilmullina A., Klausen T.G., Paterson N.W., Suslova A. & Eide C.H. (2021). Regional correlation and seismic stratigraphy of Triassic Strata in the Greater Barents Sea: Implications for sediment transport in Arctic basins. Basin research, 33(2), pp. 1546–1579. https://doi.org/10.1111/bre.12526
10. Gramberg I.S., Shkola I.V., Preobrazhenskaya E.N., Bro E.G. (1985) Parametric wells on the islands of the Barents and Kara Seas. Sovetskaya Geologiya (Soviet Geology), 1, pp. 95–98. (In Russ.)
11. Grundvåg S. and S. Olaussen (2017). Sedimentology of the Lower Cretaceous at Kikutodden and Keilhaufjellet, southern Spitsbergen: implications for an onshore–offshore link. Polar Research, 36, 1302124. https://doi.org/10.1080/17518369.2017.1302124
12. Hansford P.A. (2014). Basin modelling of the south-west Barents Sea. Master’s thesis.
13. Hassaan, M., Faleide, J. I., Gabrielsen, R. H., & Tsikalas, F. (2020). Carboniferous graben structures, evaporite accumulations and tectonic inversion in the southeastern Norwegian Barents Sea. Marine and Petroleum Geology, 112, 104038. https://doi.org/10.1016/j.marpetgeo.2019.104038
14. Henriksen E., Ryseth A.E., Larssen G.B., Heide T., Rønning K., Sollid K. and Stoupakova A.V. (2011). Tectonostratigraphy of the greater Barents Sea: implications for petroleum systems. Geological Society, London, Memoirs, 35, pp. 163–195, https://doi.org/10.1144/M35.10
15. Kachurina N.V., Makariev A.A., Makarieva E.M. et al. (2013). State geological map of the Russian Federation. Scale 1: 1 000 000 (third generation). Series North Kara-Barents Sea and Taimyr-Severozemelskaya. Sheet T-45−48 – Cape Chelyuskin. Explanatory letter. St. Petersburg: VSEGEI Cartographic Factory, 568 p. (In Russ.)
16. Kazanin G.S., Pavlov S.P., Shlykova V.V., Stupakova A.V., Norina D.A., Sautkin R.S., Suslova A.A. (2011). Seismic-geological structure of the Pechora Sea and south-eastern part of the Barents Sea based on the interpretation of the of 2D-seismic profiles. Geology and geoecology of the continental margins of Eurasia. Issue 3. Moscow: GEOS, pp. 59–81. (In Russ.)
17. Kireev G.I., Rudenko M.N. et al. (2009). Complex processing of drilling wells data in the Barents Sea region (wells 1-Admiralteyskaya, 1-Krestovaya, 1-Arctic, 1-Fersmanovskaya). Report. (In Russ.)
18. Kiryukhina. N.M., and Kiryukhina, T.A. (2013). Source potential of the upper Jurassic rocks of the Barents Sea petroleum basin. Moscow University Geology Bulletin, 68(1), pp. 26–34. (In Russ.) http://dx.doi.org/10.3103/S0145875213010055
19. Klausen T.G., Müller R., Poyatos-Moré M., Olaussen S., & Stueland E. (2022). Tectonic, provenance and sedimentological controls on reservoir characteristics in the Upper Triassic–Middle Jurassic Realgrunnen Subgroup, SW Barents Sea. Tectonophysics, 765, pp. 35–51 https://doi.org/10.1144/SP495-2018-165
20. Korago E.A., Kovaleva G.N., Shchekoldin R.A., Ilyin V.F., Gusev E.A., Krylov A.A., Gorbunov D.A. (2022). Geological Structure of the Novaya Zemlya Archipelago (West Russian Arctic) and Peculiarities of the Tectonics of the Eurasian Arctic. Geotectonics, 56(2), pp. 123–156. https://doi.org/10.1134/s0016852122020030
21. Ktenas D., Nielsen J.K., Henriksen E., Meisingset I., & Schenk O. (2023). The effects of uplift and erosion on the petroleum systems in the southwestern Barents Sea: Insights from seismic data and 2D petroleum systems modelling. Marine and Petroleum Geology, 158, 106535. https://doi.org/10.1016/j.marpetgeo.2023.106535
22. Lasabuda A.P., Johansen N.S., Laberg J.S., Faleide J.I., Senger K., Rydningen T.A. ... & Hanssen A. (2021). Cenozoic uplift and erosion of the Norwegian Barents Shelf–A review. Earth-Science Reviews, 217, 103609. https://doi.org/10.1016/j.earscirev.2021.103609
23. Leith T.L., Weiss H.M., Mørk A., Elvebakk G., Embry A.F., Brooks P.W. & Borisov A.V. (1993). Mesozoic hydrocarbon source-rocks of the Arctic region. Norwegian petroleum society special publications, 2, pp. 1–25. https://doi.org/10.1016/B978-0-444-88943-0.50006-X
24. Malyshev N.A., Verzhbitsky V.E., Skaryatin M.V., Balagurov M.D., Ilyushin D.V., Kolyubakin A.A., Gubareva O.A., Gatovsky Yu.A., Lakeev V.G., Lukashev R.V., Stupakova A.V., Suslova A.A., Obmetko V.V., Komissarov D.K. (2023). Stratigraphic Drilling in the Northern Kara Sea: First Case and Preliminary Results. Russ. Geol. Geophys., 64(3), pp. 257–269. https://doi.org/10.2113/RGG20224459
25. Malysheva S.V. (2015). Regional modeling of basins of various geodynamic types in connection with the forecast of their oil and gas content. Cand. Geol. and Min. Sci. Diss. St. Petersburg: VNIGNI, 138 p. (In Russ.)
26. Marín D., Escalona A., Śliwińska K.K., Nøhr-Hansen H., Mordasova A. (2017). Sequence stratigraphy and lateral variability of Lower Cretaceous clinoforms in the southwestern Barents Sea. AAPG Bull. 101, pp. 1487–1517. https://doi.org/10.1306/10241616010
27. Matthews K., Maloney K., Zahirovic S., Williams S., Seton M., & Müller R. (2016). Global plate boundary evolution and kinematics since the late Paleozoic. Global and Planetary Change, 146, pp. 226–250.
28. Mordasova A.V., Stoupakova A.B., Suslova A.A., Ershova D.K., Sidorenko S.A. (2019). Conditions of formation and forecast of natural reservoirs in clinoform complex of the Lower Cretaceous of the Barents-Kara shelf. Georesursy = Georesources, 21(2), pp. 63–79. (In Russ.) https://doi.org/10.18599/grs.2019.2.63-79
29. Mordasova A.V., Stoupakova A.V., Suslova A.A., Escalona A.V., Marín D., & Gilmullina A. (2024). Sequence stratigraphy and palaeogeography of the Upper Jurassic and Lower Cretaceous in the Eastern Barents Sea. Basin Research, 36(2), e12862. https://doi.org/10.1111/bre.12862
30. Mueller S., Hounslow M.W., & Kürschner W.M. (2016). Integrated stratigraphy and palaeoclimate history of the Carnian Pluvial Event in the Boreal realm; new data from the Upper Triassic Kapp Toscana Group in central Spitsbergen (Norway). Journal of the Geological Society, 173(1), 186–202.
31. Nikishin A.M., Petrov E.I. et al. (2019). Geological structure and history of the Arctic Ocean based on new geophysical data: implications for paleoenvironment and paleoclimate. Part 2. Mesozoic to Cenozoic geological evolution. Earth-Science Reviews, 217, 103034. https://doi.org/10.1016/j.earscirev.2019.103034
32. Nikitin, D.S., Khutorskoy, M.D., Ivanov, D.A., Gorskikh, P.P. (2020). Deep structure and oil and gas content of the northeastern part of the Barents Sea shelf. Proceedings of the Geological Institute, (622), pp. 5–142. (In Russ.)
33. Norina D.A. (2014). Structure and petroleum potential of PermianTriassic terrigenous deposits of the Barents Sea shelf. Cand. Geol. and Min. Sci. Diss. Moscow: MSU, 208 p. (In Russ.)
34. Ohm S.E., Karlsen D.A., Austin T.J.F. (2008). Geochemically driven exploration models in uplifted areas: Examples from the Norwegian Barents Sea. AAPG Bulletin, 92(9), pp. 1191–1223. https://doi.org/10.1306/06180808028
35. Pavlov L.A., Matigorov A.A., Zaripov O.G., et al. (1985). Scientific processing of materials from drilling parametric and especially important exploratory wells on the shelf of the Barents and Kara Seas. Report. Murmansk. (In Russ.)
36. Pepper A.S., Corvi P.J. (1995). Simple kinetic models of petroleum formation. Part I: oil and gas from kerogen. Marine Petroleum Geology, 12(3), pp. 291–319. https://doi.org/10.1016/0264-8172(95)98382-F
37. Polteau S., Hendriks B.W., Planke S., Ganerød M., Corfu F., Faleide J.I., Myklebust R. (2016). The Early Cretaceous Barents Sea Sill Complex: distribution, 40Ar/39Ar geochronology, and implications for carbon gas formation. Palaeogeography, Palaeoclimatology, Palaeoecology, 441, pp. 83–95. https://doi.org/10.1016/j.palaeo.2015.07.007
38. Polyakova, I. D. (2015). Oil and gas source strata of the Arctic. Lithology and minerals, (1), pp. 30–54. (In Russ.)
39. Rojo L.A., & Escalona A. (2018). Controls on minibasin infill in the Nordkapp Basin: Evidence of complex Triassic synsedimentary deposition influenced by salt tectonics. AAPG Bulletin, 102(7), pp. 1239–1272. https://doi.org/10.1306/0926171524316523
40. Rojo L.A., Cardozo N., Escalona A., & Koyi H. (2019). Structural style and evolution of the Nordkapp Basin, Norwegian Barents Sea. AAPG Bulletin, 103(9), pp. 2177–2217. https://doi.org/10.1306/01301918028
41. Sakulina G.A., Pavlenkova S.N., Kashubin (2015). Structure of the Earth’s crust in the northern part of the Barents-Kara Sea region according to the DSS 4-AR profile. Geology and Geophysics, 56(11), pp. 2053–2066. (In Russ.) https://doi.org/10.15372/GiG20151108
42. Shelf sedimentary basins of the Russian Arctic: geology, geoecology, mineral resource potential (2020). Ed. G.S. Kazanin. Murmansk; St. Petersburg: Renome, 544 p. (In Russ.)
43. Shipilov E.V. (2018). Basaltoid magmatism and the problem of gas content of the East Barents megabasin. Arctic: ecology and economics, 2(30), pp. 94–106. (In Russ.) https://doi.org/10.25283/2223-4594-2018-2-94-106
44. Smelror M., Petrov O.V., Larssen G.B. & Werner S.C. (2009). Geological history of the Barents Sea. Norges Geol. undersøkelse, 1, pp. 1–135.
45. Sobolev P. (2012). Cenozoic uplift and erosion of the Eastern Barents Sea - Constraints from offshore well data and the implication for petroleum system modeling. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften, 163, pp. 309–324. https://doi.org/10.1127/1860-1804/2012/0163-0323
46. Startseva K.F., Nikishin A.M., Malyshev N.A., Nikishin V.A., Valyushcheva A.A. (2017). Geological and hydrocarbon model of the East Barents Sea megabasin using the example of profile 4-AR. Proc. Conf.: New ideas in oil and gas geology, pp. 349–352. (In Russ.)
47. Stoupakova A.V. (2000). Development of sedimentary basins of the ancient continental margin and their oil and gas potential (using the Barents Sea shelf as an example). Geologiya nefti i gaza = Oil and Gas Geology, 4, pp. 51–57. (In Russ.)
48. Stoupakova A.V. (2011). Structure and petroleum potential of the Barents-Kara shelf and adjacent territories. Geologiya nefti i gaza = Oil and Gas Geology, 6, pp. 99–115 (In Russ.)
49. Stoupakova A.V., Bolshakova M.A., Suslova A.A., Mordasova A.V., Osipov K.O., Kovalevskaya S.O., Kolesnikova T.O., Shevchenko G., Masterkov I., Tsigankova A.A., Gilmullina A.A. (2021). Generation potential, distribution area and maturity of the Barents-Kara Sea source rocks. Georesursy = Georesources, 23(2), pp. 6–25. (In Russ.) https://doi.org/10.18599/grs.2021.2.1
50. Stoupakova A.V., Suslova A.A., Korobova N.I., Burlin Yu.K. (2012). Cyclicity and prospects of the Jurassic oil-and-gas complex on the Barents Sea shelf. Moscow Univ. Geol. Bull., 67, pp. 353–360. https://doi.org/10.3103/S0145875212060063
51. Suslova A.A. (2014). Seismostratigraphic analysis and oil and gas prospects of Jurassic deposits of the Barents Sea shelf. Neftegazovaya Geologiya. Teoriya I Praktika = Oil and gas geology. Theory and practice, 9(2), pp. 1–19. (In Russ.)
52. Suslova A.A., Mordasova A.V., Stoupakova A.V., Gilaev R.M., Gatovsky Yu.A., Korobova N.I., Gumerov A.R., Sakhabov T.R., Kolesnikova T.O. (2023). Structure and petroleum prospects of the northern part of the BarentsKara Sea region. Georesursy = Georesources, 25(2), pp. 47–63. (In Russ.) https://doi.org/10.18599/grs.2023.2.4
53. Ungerer P. (1990). State of the art of research in kinetic modelling of oil formation and expulsion. Organic Geochemistry, 16(1–3), pp. 1–25. https://doi.org/10.1016/0146-6380(90)90022-R
54. Ustritsky V.I., Tugarova M.A. (2013). Unique section of the Permian and Triassic, discovered by the Admiralteyskaya-1 well (Barents Sea). Neftegazovaya Geologiya. Teoriya I Praktika = Oil and gas geology. Theory and practice, 8(2). (In Russ.)
55. van Koeverden J.H., Nakrem H.A., & Karlsen D.A. (2010). Migrated oil on Novaya Zemlya, Russian Arctic: Evidence for a novel petroleum system in the eastern Barents Sea and the Kara Sea. AAPG bulletin, 94(6), pp. 791–817. https://doi.org/10.1306/10200909146
56. Vandenbroucke M., Behar F. & Rudkiewicz J.L. (1999). Kinetic modelling of petroleum formation and cracking: implications from the high pressure/ high temperature Elgin Field (UK, North Sea). Organic Geochemistry, 30, pp. 1105–1125. https://doi.org/10.1016/S0146-6380(99)00089-3
57. Vasiliev V.V., Viskunova K.G., Kiyko O.A., Kozlov S.A. et al. (2013). State geological map of the Russian Federation. Scale 1:1 000 000 (third generation). North Kara-Barents Sea series. Sheet T-41–44 – Cape Zhelaniya. Explanatory letter. St. Petersburg: VSEGEI Cartographic Factory, 200 p. (In Russ.)
58. Verba M.L. (2007). Natural hydrocarbon manifestations in the sedimentary cover of Svalbard. Neftegazovaya Geologiya. Teoriya I Praktika = Oil and gas geology. Theory and practice, 2. pp. 1−22. (In Russ.) Verba M.L., Matveev Yu., Roslov Yu.V., Sakulina T.S. (2005). Lithosphere of the Kara-Barents shelf plate and the Arctic coast of the European north (based on the results of studies on the reference profile 2-AR). The structure of the lithosphere of the Russian part of the Barents region. Edited by N.V. Sharova, F.P. Mitrofanova, M.L. Willows, K. Gillen. Petrozavodsk: Karelian Scientific Center of the Russian Academy of Sciences, pp. 182–216. (In Russ.)
59. Viskunova K.G., Podgornykh L.V., Petrova V.I., et al. (2006). сreation of a framework network of basin modeling in order to assess the oil and gas potential of the Barents Sea. State contract, St. Petersburg: VNIIokeangeologiya (In Russ.)
60. Wygrala B.P. (1989). Integrated study of an oil field in the southern Po Basin, Northern Italy. PhD thesis, University of Cologne, Germany.
61. Zarkhidze D.V., Krasnozhen A.S., Shkarubo S.I. et al. (2021). State geological map of the Russian Federation on a scale of 1: 1 000 000. Third generation. North Kara-Barents Sea series. Sheet S-39-40 –Matochkin Shar Strait. Explanatory letter. St. Petersburg: VSEGEI Cartographic Factory, 333 p. (In Russ.)
Review
For citations:
Kolesnikova T.O., Mordasova A.V., Suslova A.A., Stoupakova A.V., Bolshakova M.A., Krasnova E.A., Sautkin R.S., Gilaev R.M., Kuvinov I.V., Gilmullina A.A., Osipov K.O. Evolution and Formation Conditions of Petroleum Potential of the Barents-North Kara Sea Shelf Based on Basin Modelling. Georesursy = Georesources. 2025;27(2):93–117. (In Russ.) https://doi.org/10.18599/grs.2025.2.8