Karagaikul gold-porhyric ore occurrence (South Urals): geochemistry and petrogenesis of intrusive rock, composition of minerals of near-ore metasomatites and ores
https://doi.org/10.18599/grs.2022.3.16
Abstract
The petrological and geochemical characteristics of intrusive rocks, sources of magmatic melts, as well as the composition of minerals of near-ore metasomatites and ores of the Karagaikul gold-porphyry ore occurrence located in the Main Ural fault zone in the South Urals have been studied. The content of petrogenic oxides was determined by the silicate method, rare elements – using ICP-MS analysis on a quadrupole mass spectrometer ELAH 9000. The composition of minerals was studied using electron microscopic analysis on a scanning electron microscope REMMA-202M. It was found that gabbro, gabbro-diorite and diorite of the ore-bearing dyke series of the Karagaikul ore occurrence are suprasubduction magmatites of normal alkalinity belonging to the transitional and calc-alkaline petrogenetic series. They were formed from fluid-saturated melts. The main source of melts for intrusive rocks was most likely spinel peridotites of the suprasubduction lithospheric mantle, previously metasomatized by aquatic fluids that arose during the dehydration of rocks of the subducting oceanic plate. The dykes underwent propylitization of the biotite-actinolite facies in a near-ore halo (paragenesis: biotite + actinolite + epidote + orthoclase + albite + quartz + chlorite + pumpelliite), and the host serpentinized ultrabasites – carbonatization (chromogenesis: dolomite + magnesite). According to the chlorite geothermometer, the temperature of propylite formation is 287–317 °С. Sulfide minerals in goldbearing stockworks are represented by pyrite, chalcopyrite, galena, pentlandite, pyrrhotine, and violarite.
Keywords
About the Authors
S. E. ZnamenskyRussian Federation
Sergey E. Znamensky – Dr. Sci. (Geology and Mineralogy), Chief Researcher
16/2 K. Marx st., Ufa, 450077
A. M. Kosarev
Russian Federation
Alexandr M. Kosarev – Cand. Sci. (Geology and Mineralogy), Leading Researcher
16/2, Karl Marx st., Ufa, 450077
G. T. Shafigullina
Russian Federation
Gulnara T. Shafigullina – Cand. Sci. (Geology and Mineralogy), Senior Researcher
16/2, Karl Marx st., Ufa, 450077
References
1. Castillo P.R., Janney P., Solidum R.U. (1999). Petrology and geochemistry of Camiguin Island, southern Philippines: Insights to the source of adakites and other lavas in a complex arc setting. Contributions to Mineralogy and Petrology, 134(1), pp. 33-51. DOI: 10.1007/s004100050467
2. Cathelineau M. (1988). Cation site occupancy in chlorites and illites as a function of temperature. Clay minerals, 23(4), pp. 471–485. DOI: 10.1180/claymin.1988.023.4.13
3. Coban H. (2007). Basalt magma genesis and fractionation in collision- and extension provinces: a comparison between eactern, central western Anatolua. Earth Sci. Rev., 80, pp. 219-239. DOI: 10.1016/j.earscirev.2006.08.006
4. Grabezhev A.I. (2009). Sr-Nd-C-O-H-S isotope-geochemical description of South Urals porphyry-copper fluid-magmatic systems: Probable sources of matter. Lithosphere (Russia), 6, pp. 66-89. (In Russ.)
5. Hey M.H. (1954). A new review of chlorites. The mineralogy magazine and journal of the mineralogical society, 30(224), pp. 278-292. http://doi.org/10.1180/minmag.1954.030.224.01
6. Jowett E. C. (1991). Fitting iron and magnesium into the hydrothermal chlorite geothermometer. Geological Association of Canada+MAC+SEG Joint Annual Meeting. Toronto. A 62 p.
7. Kay S.M., Mpodozis C. (2001). Central Andean ore deposits linked to evolving shallow subduction system and thickening crust. GSA Today, 11, pp. 4-9. DOI: 10.1130/1052-5173(2001)011<0004:CAODLT.2.0.CO;2
8. Kosarev A.M., Puchkov V.N., Seravkin I.B., Kholodnov V.V., Grabezhev A.I., Ronkin Y.L. (2014). New data on the age and geodynamic position of copper- porphyry mineralization in the Main Uralian Fault zone (Southern Urals). Doklady Earth Sciences, 495(1), pp. 1317-1321. DOI: 10.1134/S1028334X1411004X
9. Leake B.E. (1978). Nomenclature of amphiboles. Am. Mineral., 63, pp. 1023-1052.
10. MacLean, W.H., Barrett, T.J. (1993). Lithochemical techniques using immobile elements. Journal of. Geochemical Exploration, 48, pp. 109-133. DOI: 10.1016/0375-6742(93)90002-4
11. McDonough W. F., Sun S. (1995). The composition of the Earth. Chemical Geology, 120, pp. 223-253. DOI: 10.1016/0009-2541(94)00140-4
12. Metasomatism and metasomatic rocks (1998). Ed: V.A. Zharikov. Moscow: Naychnyi mir, 492 p. (In Russ.)
13. Middlemost,E. A. K. (1994). Naming materials in magma/igneous rock system. Earth Sci. Rev., 37, pp. 215-224. DOI: 10.1016/0012-8252(94)90029-9
14. Pearce J.A. (1983). Role of the sub-continental lithosphere in magma genesis at active continental margins. In: C.J. Hawkesworth and M.J. Norry (eds.). Continental basalts and mantle xenoliths. Cambridge, Massachusetts: Shiva Publications, pp. 230-249.
15. Pearce J.A. (2014). Immobile Element Fingerpriting of Ophiolites. Elements, 10, pp. 101-108. DOI: 10.2113/gselements.10.2.101
16. Plotinskaya O.Yu., Grabezhev A.I., Tessalina S., Seltmann R., Groznova E.O., Abramov S.S. (2017). Porphyry deposits of the Urals: Geological framework and metallogeny. Ore Geology Reviews, 85, pp. 153-173. DOI:10.1016/j.oregeorev.2016.07.002
17. Puchkov V.N. (2010). Geology of the Urals and Cis-Urals (actual problems of stratigraphy, tectonics, geodynamics and metallogeny). Ufa: DesignPoligraphService, 280 p. (In Russ.)
18. Putrica K., Busby C. (2007). The tectonic significance of high-K2O volcanism in the Sierra Nevada, California. Geology, 35(10), pp. 923-926. DOI: 10.1130/G23914A.1
19. Richards J.P., Spell T., Rameh E., Razique A., Fletcher T. (2012). High Sr/Y magmas reflect arc matyrity, high magmatic water content, and porphyry Cu±Mo±Au potential: examples from the Tethyan arcs of Central and Eastern Iran and Western Pakistan. Economic Geology, 107, pp. 295-332. DOI: 10.2113/econgeo.107.2.295
20. Votyakov S.L., Kiseleva D.V., Shagalov E.S., Cherednichenko N.V., Deryugina L.K., Denisov S.A., Chempalov A.P., Uzkikh S.E., Orekhov A.A. (2006). Multielement analysis of geological samples by inductively coupled plasma mass spectrometry on an ELAN 9000. Ezhegodnik-2005. Ekaterinburg, IGG UrB RAS, 153, pp. 425-430. (In Russ.)
21. Winchester, J. A., Floyd, P. A. (1977). Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20(4), pp. 325-343. DOI: 10.1016/0009-2541(77)90057-2
22. Znamensky S.E. (2019). The positive flower structure of the Yalchigulovsky fault in the Southern Urals. Geologicheskii vestnik, 2, pp. 24-31. (In Russ.). http://doi.org/10.31084/2619-0087/2019-2-2.
23. Znamensky S.E. (2021). Petrological and geochemical characteristic of the rocks of the Voznesensky intrusive massif (Southern Urals): Оn the question of the composition and sources of magma producing gold and copper porphyry mineralization. Lithosphere (Russia), 21(3), pp. 365-385. (In Russ.) DOI: 10.24930/1681-9004-2021-21-3-365-385
Review
For citations:
Znamensky S.E., Kosarev A.M., Shafigullina G.T. Karagaikul gold-porhyric ore occurrence (South Urals): geochemistry and petrogenesis of intrusive rock, composition of minerals of near-ore metasomatites and ores. Georesursy = Georesources. 2022;24(3):187-196. (In Russ.) https://doi.org/10.18599/grs.2022.3.16