Preview

Georesources

Advanced search

Comprehensive evaluation of Neoproterozoic source rocks formation

https://doi.org/10.18599/grs.2022.2.8

Abstract

Based on comprehensive analysis of geological, geochemical, and paleotectonic settings, the conditions for the formation of Neoproterozoic oil and gas source rocks of the Earth are analyzed. A brief review of oil and gas fields in Eastern Siberia, China, the Middle East, Africa, and Australia is given, with Riphean and Vendian terrigenous and carbonate source rock. An overview of the oil and gas bearing basins of the world and a stratigraphic reference of the Neoproterozoic strata discovered within them, containing proven and suspected oil and gas source rocks, are given.
The formation of Neoproterozoic oil and gas source rocks is analyzed in a complex way: simultaneously from the point of view of paleotectonics, paleogeographic and paleoclimatic conditions, paleobiological diversity and geochemical conditions. As part of paleotectonic analysis, the results of plate tectonic reconstructions for the Neoproterozoic stage are presented in accordance with one of the most currently relevant geodynamic models. Paleogeographic events and paleoclimatic conditions are described in the context of the specifics of the formation settings of carbonate-terrigenous oil and gas source rocks. In particular, the reasons for the accumulation of sediments enriched with organic carbon in the interglacial epochs of the Neoproterozoic and possible mechanisms for maintaining conditions favorable for their accumulation are considered. The conditions for the accumulation of oil and gas source rocks are also linked to global paleobiological pre-Phanerozoic events, and the analysis of the geochemical data of rocks makes it possible to characterize and correlate Neoproterozoic oil and gas source rocks on a global scale. On the basis of such a comprehensive assessment, a conclusion was made about fundamentally similar geological conditions for the formation of Neoproterozoic oil and gas source rocks in oil and gas bearing basins.

About the Authors

K. A. Sitar
Lomonosov Moscow State University
Russian Federation

Ksenia A. Sitar – PhD (Geology and Mineralogy), Senior Researcher, Petroleum Geology Department

1, Leninskie gory, Moscow, 119234



B. V. Georgievskiy
Zarubezhneft
Russian Federation

Boris V. Georgievskiy – PhD (Geology and Mineralogy), geologist

bld. 1, 9/1/1 Armianskiy lane, Moscow, 101990



M. A. Bolshakova
Lomonosov Moscow State University
Russian Federation

Maria A. Bolshakova – PhD (Geology and Mineralogy), Senior Researcher, Petroleum Geology Department

1, Leninskie gory, Moscow, 119234



R. S. Sautkin
Lomonosov Moscow State University
Russian Federation

Roman S. Sautkin – PhD (Geology and Mineralogy), Senior Researcher, Petroleum Geology Department

1, Leninskie gory, Moscow, 119234



References

1. Abu A., Adeleye M.A., Ehinola O.A., Asiedu D.K. (2021). The hydrocarbon prospectivity of the Mesoproterozoic–Paleozoic intracratonic Voltaian Basin, West African Craton, Ghana. Journal of Petroleum Exploration and Production Technology, 11, pp. 617–625. https://doi.org/10.1007/s13202-020-01036-7

2. Ai J., Zhong N., Zhang T., Zhang Y., Wang T., George S.C. (2021). Oceanic water chemistry evolution and its implications for post-glacial black shale formation: Insights from the Cryogenian Datangpo Formation, South China. Chemical Geology, 566. https://doi.org/10.1016/j.chemgeo.2021.120083

3. Alkmim F.F., Martins-Neto M.A. (2012). Proterozoic first-order sedimentary sequences of the São Francisco craton, eastern Brazil. Marine and Petroleum Geology, 33, pp. 127–139. https://doi.org/10.1016/j.marpetgeo.2011.08.011

4. Bazhenova Т.К. (2009). Evolution of oil and gas generation in the Earth’s history and petroleum prediction in sedimentary basins. Russian Geology and Geophysics, 50(4), pp. 308–319. https://doi.org/10.1016/j.rgg.2009.03.008

5. Bazhenova T.K., Dakhnova M.V., Zheglova T.P. (2014) Source rock formations, Oils and Gases of the Precambrian and Lower-Middle Cambrian of the Siberian Platform. Moscow: VNIGNI, 128 p. (In Russ.)

6. Bazhenova Т.К. (2016). Petroleum source formations of ancient platforms of Russia and their petroleum potential. Neftegazovaya Geologiya. Teoriya I Praktika = Petroleum Geology - Theoretical and Applied Studies, 11(4). (In Russ.) https://doi.org/10.17353/2070-5379/45_2016

7. Bechsta T., Ger H., Spence G., Werner G. (2015). Late Cryogenian (Neoproterozoic) glacial and post-glacial successions at the southern margin of the Congo Craton, northern Namibia: facies, palaeogeography and hydrocarbon. London: Geological Society, Special Publications, 326, pp. 255–287. https://doi.org/10.1144/SP326.15

8. Cohen P., Macdonald F. (2015). The Proterozoic Record of Eukaryotes. Paleobiology, 41(4), pp. 610–632. https://doi.org/10.1017/pab.2015.25

9. Craig J., Biffi U., Galimberti R.F., Ghori K.A.R., Gorter J.D., Hakhoo N., Le Heron D.P., Thurow J., Vecoli M. (2013). The palaeobiology and geochemistry of Precambrian hydrocarbon source rocks. Marine and Petroleum Geology, 40, pp. 1–47. https://doi.org/10.1016/j.marpetgeo.2012.09.011

10. Craig J., Thurow J., Thusu B. et al. (2009). Global Neoproterozoic petroleum systems: The emerging potential in North Africa. London: Geological Society, Special Publications, pp. 1–25. https://doi.org/10.1144/SP326.1

11. Edgell H.S. (1991). Proterozoic salt basins of the Persian Gulf area and their role in hydrocarbon generation. Precambrian Research, 54. pp. 1–14. https://doi.org/10.1016/0301-9268(91)90065-I

12. Etemad-Saeed N., Hosseini-Barzi M., Adabi M. H., Miller N. R., Abbas S., Houshmandzadeh A., Stockli, D. F. (2015). Evidence for ca. 560 Ma Ediacaran glaciation in the Kahar Formation, central Alborz Mountains, northern Iran. Gondwana Research, 31, pp. 164–183. https://doi.org/10.1016/j.gr.2015.01.005

13. Feng L.-J., Chu X.-L., Huang J., Zhang Q.-R., Chang H.-J. (2010). Reconstruction of paleo-redox conditions and early sulfur cycling during deposition of the Cryogenian Datangpo Formation in South China. Gondwana Research, 18, pp. 632–637. https://doi.org/10.1016/j.gr.2010.02.011

14. Filiptsov Yu.A. (2015). Oil and gas potential of the Upper Proterozoic of the western part of the Siberian platform. Dr. geol. and min. sci. diss. Krasnoyarsk: INGG SO RAN, pp. 171–172. (In Russ.)

15. Frolov S.V., Akhmanov G.G., Bakay E.A., Lubnina N.V., Korobova N.I., Karnyushina E.E., Kozlova E.V. (2015). Meso-Neoproterozoic petroleum systems of the Eastern Siberian sedimentary basins. Precambrian Research, 259, pp. 95–113. https://doi.org/10.1016/j.precamres.2014.11.018

16. Ghori K.A.R., Craig J., Thusu B., Luning S., Geiger M. (2016). Global Infracambrian petroleum systems: a review. Global Neoproterozoic Petroleum Systems: The Emerging Potential in North Africa. London: Geological Society, Special Publications, 326, pp. 109–136. https://doi.org/10.1144/SP326.6

17. Grantham, P.J., Lijmbach, G.W.M., Posthuma, J., Hughes Clarke, M.W., Willink, R.J. (1987). Origin of crude oils in Oman. Journal of Petroleum Geology, 11, pp. 61–80. https://doi.org/10.1111/j.1747-5457.1988.tb00801.x

18. Grosjean E., Love G.D., Stalvies C., Fike D.A., Summons R.E. (2009). Origin of petroleum in the Neoproterozoic–Cambrian South Oman Salt Basin. Organic Geochemistry, 40, pp. 87–110. https://doi.org/10.1016/j.orggeochem.2008.09.011

19. Hakhoo N., Bhat G. M., Koul S., Craig J., Thusu B. (2012). Potential Proterozoic Petroleum System: Northwest Himalayan Thrust Belt, Jammu (India). AAPG International Conference and Exhibition, Milan, Italy.

20. Halverson G., Porter S., Shield G. (2020). The Tonian and Cryogenian Periods. Geologic Time Scale 2020, vol. 1, pp. 495–519. https://doi.org/10.1016/B978-0-12-824360-2.00017-6

21. Halverson G.P. (2006). A Neoproterozoic Chronology. Neoproterozoic Geobiology and Paleobiology. Springer, pp. 231–271. https://doi.org/10.1007/1-4020-5202-2_8

22. Hoak T.E., Klawitter A.L., Dommer C.F., Scaturro P.V. (2014). Integrated Exploration of the Owambo Basin, Onshore Namibia: Hydrocarbon Exploration and Implications for a Modern Frontier Basin. AAPG Annual Convention and Exhibition, Houston, Texas.

23. Hoffman P.F., Abbot D.S., Ashkenazy Y. et al. (2017). Snowball Earth climate dynamics and Cryogenian geology-geobiology. Science Advances, 3(11). https://doi.org/10.1126/sciadv.1600983

24. Hoffman P.F., Kaufman A.J., Halverson G.P., Schrag D.P. (1998). A Neoproterozoic snowball Earth, Science, 281, pp. 1342–1346. https://doi.org/10.1126/science.281.5381.1342

25. Huang Z., Zhao B., Jiang Q., Wang S., & Liu B. (2008). Petroleum systems of the Taoudeni Basin, West Africa. Petroleum Science, 5(1), pp. 24–30. https://doi.org/10.1007/s12182-008-0004-6

26. Huntley J.W., Xiao S., Kowalewski M. (2006). On the Morphological History of Proterozoic and Cambrian Acritarchs. Neoproterozoic Geobiology and Paleobiology, pp. 23–56. https://doi.org/10.1007/1-4020-5202-2_2

27. Johnson C.L., Greene T.J., Zinniker D.A., Moldowan J.M., Hendrix M.S., Carroll A.R. (2003). Geochemical characteristics and correlation of oil and nonmarine source rocks from Mongolia. AAPG Bulletin, 87(5), pp. 817–846. https://doi.org/10.1306/12170201073

28. Kah L.C., Sherman A.G., Narbone G.M., Knoll A.H., Kaufman A.J. (1999). Delta C-13 stratigraphy oа the Proterozoic Bylot Supergroup, Baffin Island, Canada: Implications for regional lithostratigraphic correlations. Canadian Journal of Earth Sciences, 36(3), pp. 313–332. https://doi.org/10.1139/e98-100

29. Kim N.S. (2008). Geochemistry of the Precambrian oils of Eurasia. Abstract Cand. geol. and min. sci. diss., 19 p. (In Russ.)

30. Kontorovich A.E., Timoshina I.D., Filipiov Yu.A. (2011). Composition of biomarkers in oils from the Riphean Baikit anteclise. Geologiya nefti i gaza = Russian Oil and Gas Geology, 5. pp. 78–83. (In Russ.)

31. Kontorovich A.E., Trofimuk A.A., Basharin A.K., Belyaev S.Yu., Fradkin G.S. (1996). Global regularities of the Precambrian of the Earth. Geologiya i geophyzika, 37(8), pp. 6–42. (in Russ.)

32. Konyukhov A.I. (2017). Oceanic anoxic events of the Cretaceous period and their role in the formation of oil source deposits on the margins of the continents. Georesursy = Georesources. Special issue, pp. 43–55. (in Russ.) http://doi.org/10.18599/grs.19.6

33. Kunzmann M., Halverson G.P., Scott C., Minarik W.G., Wing B.A. (2015). Geochemistry of Neoproterozoic black shales from Svalbard: Implications for oceanic redox conditions spanning Cryogenian glaciations. Chemical Geology, 417, pp. 383–393. https://doi.org/10.1016/j.chemgeo.2015.10.022

34. Li C., Love G.D., Lyons T.W., Scott C.T., Feng L., Huang J., Chang H., Zhang Q., Chu X. (2012). Evidence for a redox stratified Cryogenian marine basin, Datangpo Formation. South China. Earth Planet. Sci. Lett., 331, pp. 246–256. https://doi.org/10.1016/j.epsl.2012.03.018

35. Li Z.X., Bogdanova, S.V., Collins, A.S., Davidson, A., De Waele, B., Ernst, R.E., Fitzsimons, I.C.W., Fuck, R.A., Gladkochub, D.P., Jacobs, J., Karlstrom, K.E., Lu, S., Natapov, L.M., Pease, V., Pisarevsky, S.A., Thrane, K., Vernikovsky, V. (2008). Assembly, configuration, and break-up history of Rodinia: A synthesis. Precambrian Res., 160, pp. 179–210. https://doi.org/10.1016/j.precamres.2007.04.021

36. Li Z.-X., Evans, D.A.D., Halverson, G.P. (2013). Neoproterozoic glaciations in a revised global palaeogeography from the breakup of Rodinia to the assembly of Gondwanaland. Sediment. Geol., 294, pp. 219–232. https://doi.org/10.1016/j.sedgeo.2013.05.016

37. Lillis P.G. (2016). The Chuar Petroleum System, Arizona and Utah. In book: Hydrocarbon source rocks in unconventional plays, Rocky Mountain Region. Eds: Michael P. Dolan, Debra K. Higley, Paul G. Lillis. Rocky Mountain Association of Geologists.

38. Littke R. (1993). Deposition, diagenesis and weathering of organic matter-rich sediments. Lecture Notes in Earth Sciences, 47, 218 p.

39. Macdonald F.A., Jones D.S., Schrag D.P. (2009). Stratigraphic and tectonic implications of a newly discovered glacial diamictite – cap carbonate couplet in southwestern Mongolia. Geology, 37(2), pp. 123–126. https://doi.org/10.1130/G24797A.1

40. Marshall T.R., Dyson I.A., Keyu L. (2007). Petroleum systems in the Amadeus Basin, central Australia: Were they all oil prone? In: ‘Central Australian Basins Symposium Proceedings, Alice Springs, August 2005. Eds: T. J. Munson and G. J. Ambrose. Northern Territory Geological Survey Special Publication 2, pp. 136–146.

41. Merdith A.S., Collins A.S., Williams S.E., Pisarevsky S., Foden J.D., Archibald D.B., Blades M.L., Alessio B.L., Armistead S., Plavsa D., Clark C., Müller R.D. (2017). A full-plate global reconstruction of the Neoproterozoic. Gondwana Res., 50, pp. 84–134. https://doi.org/10.1016/j.gr.2017.04.001

42. Merdith A.S., Williams S.E., Collins A.S., Tetley M.G., Mulder J.A., Blades M.L., Young A., Armistea, S.E., Cannon J., Zahirovic S., Müller R.D. (2021). Extending full-plate tectonic models into deep time: Linking the Neoproterozoic and the Phanerozoic. Earth-Science Reviews, 214, 103477. https://doi.org/10.1016/j.earscirev.2020.103477

43. Ojha P.S. (2012). Precambrian sedimentary basins of India: an appraisal of their petroleum potential. London: Geological Society, Special Publications, 366, pp. 19–58. https://doi.org/10.1144/SP366.11

44. Ootes L., Gleeson S., Turner E., Rasmussen K., Gordey S., Falck H., Martel E., Pierce K. (2013). Metallogenic Evolution of the Mackenzie and Eastern Selwyn Mountains of Canada’s Northern Cordillera, Northwest Territories: A Compilation and Review. Geoscience Canada, 40, pp. 40–69. https://doi.org/10.12789/geocanj.2013.40.005

45. Pollastro R.M. (1999). Ghaba Salt Basin Province and Fahud Salt Basin Province, Oman -Geological Overview and Total Petroleum Systems. USGS Report, 46 p. https://doi.org/10.3133/ofr9950D

46. Rystad Energy Database. (2022). www.rystadenergy.com Schrag D.P., Berner R.A., Hoffman P.F., Halverson G.P. (2002). On the initiation of a snowball Earth. Geochem. Geophys. Geosyst., 3(6), pp. 1–21. https://doi.org/10.1029/2001GC000219

47. Scotese C.R., Wright N. (2018). PALEOMAP Paleodigital Elevation Models (PaleoDEMS) for the Phaerozoic PALEOMAP Project, https://www.earthbyte.org/paleodem-resourcescotese- and-wright-2018

48. Singh A.K., Chakraborty P.P. (2021). Geochemistry and hydrocarbon source rock potential of shales from the Palaeo-Mesoproterozoic Vindhyan Supergroup, central India. Energy Geoscience. https://doi.org/10.1016/j.engeos.2021.10.007

49. Timoshina I.D. (2005). Geochemistry of Neoproterozoic source rock’s organic matter and oils in the southeast of the Siberian Platform. Moscow, 166 p. (In Russ.)

50. Timoshina I.D., Boldushevskaya L.N. (2020). Geochemistry of organic matter of the Neoproterozoic in the southeast of the Siberian Platform. Georesursy = Georesources, 22(4), pp. 41–54. (In Russ.) https://doi.org/10.18599/grs.2020.4.41-54

51. Tissot B.P., Welte D.H. (1978). Petroleum formation and occurrence. Berlin-Heidelberg-New York: Springer-Verlag, 538 p.

52. Torsvik T.H., Smethurst M.A., Meert J.G., Van der Voo R., McKerrow W.S., Brasier M.D., Sturt B.A., Walderhaug H.J. (1996). Continental breakup and collision in the Neoproterozoic and Palaeozoic – a tale of Baltica and Laurentia. Earth-Science Reviews, 40(3), pp. 229–258. https://doi.org/10.1016/0012-8252(96)00008-6

53. Verard C. (2019). Plate tectonic modelling: Review and perspectives. Geological Magazine, 156(2), pp. 208–241. https://doi.org/10.1017/S0016756817001030

54. Visser W. (1991). Burial and thermal history of Proterozoic source rocks in Oman. Precambrian Research, 54. pp. 15–36. https://doi.org/10.1016/0301-9268(91)90066-J

55. Vries S., Pryer L., Fry N. (2008). Evolution of Neoarchaean and Proterozoic basins of Australia. Precambrian Research, 166, pp. 39–53. https://doi.org/10.1016/j.precamres.2008.01.005

56. Walter M.R., Veevers J.J., Calver C.R., Grey K. (1995). Neoproterozoic stratigraphy of the Centralian Superbasin, Australia. Precambrian Research 73, pp. 173–195. https://doi.org/10.1016/0301-9268(94)00077-5

57. Wiley B.N., Rauzi S.L., Cook D.A., Clifton E.H., Kuo L-C., Moser J.A. (1998). Geologic Description, Sampling, Petroleum Potential, and Depositional Environment of the Chuar Group, Grand Canyon, Arizona. Arizona Geological Survey, 94 p.

58. Xianzheng Z., Fengming J., Zhouqi C., Chunyuan H., Jianhui Z., Quan W., Kai G. (2012). Types of subtle buried-hill oil reservoirs and their accumulation simulation in Jizhong Depression, Bohai Bay Basin. Petrol. Explor. Develop., 39(2). pp. 147–154. https://doi.org/10.1016/S1876-3804(12)60027-5

59. Xiao S., Kaufman A. (2006). Neoproterozoic Geobiology and Paleobiology. Springer, 302 p. https://doi.org/10.1007/1-4020-5202-2

60. Yang F., Zhou X., Hu Y., Yang X., Yang К. (2022). Neoproterozoic extensional basins and its control on the distribution of hydrocarbon source rocks in the Yangtze Craton, South China. Geosystems and Geoenvironment. https://doi.org/10.1016/j.geogeo.2021.10 0 015

61. Zhao W., Hu S., Wang Z., Zhang S., Wang T. (2018). Petroleum geological conditions and exploration importance of Proterozoic to Cambrian in China. Petroleum Exploration and Development, 45(1), pp. 1–14. https://doi.org/10.1016/S1876-3804(18)30001-6

62. Zhilong H., Baoshun Z., Qingchun J., Songpo W., Bo L. (2008). Petroleum systems of the Taoudeni Basin, West Africa. Pet.Sci., 5, pp. 24–30. https://doi.org/10.1007/s12182-008-0004-6

63. Zhua G.-Y., Lia T.-T., Zhao K., Zhanga Z.-Y., et al. (2019). Excellent source rocks discovered in the Cryogenian interglacial deposits in South China: Geology, geochemistry, and hydrocarbon potential. Precambrian Research, 333, 105455. https://doi.org/10.1016/j.precamres.2019.105455

64. Zou C., Du J., Xu C., Wang Z., Zhang B., Wei G., Wang T., Yao G., Deng S., Liu J., et al. (2014). Petroleum exploration and development, 41(3), pp. 306–325. https://doi.org/10.1016/S1876-3804(14)60036-7


Review

For citations:


Sitar K.A., Georgievskiy B.V., Bolshakova M.A., Sautkin R.S. Comprehensive evaluation of Neoproterozoic source rocks formation. Georesursy = Georesources. 2022;24(2):47-59. (In Russ.) https://doi.org/10.18599/grs.2022.2.8

Views: 150


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1608-5043 (Print)
ISSN 1608-5078 (Online)