Preview

Georesources

Advanced search

Digital mapping of indicators that determine the sorption properties of soils in relation to pollutants, according to remote sensing data of the Earth using machine learning

https://doi.org/10.18599/grs.2022.1.8

Abstract

According to the data of remote sensing of the Earth, the accuracy of the spatial prediction of soil indicators determining sorption properties in relation to pollutants was compared. To build spatial maps of changes in soil properties, machine learning methods based on support vector regression models (SVMr) and random forest (RF) were used. It was shown that the methods of machine modeling using remote sensing can be successfully used for spatial prediction of the content of particle size fractions, organic matter, pH and the capacity of cation exchange of soils in small areas. It is shown that the spatial prediction of the content of silt fraction is best modeled using the RF algorithm, while the other properties of soils that can determine their sorption potential in relation to pollutants are better modeled using the SVMr method. In general, both machine learning methods have similar spatial prediction results.

About the Authors

K. G. Giniyatullin
Kazan Federal University
Russian Federation

Kamil G. Giniyatullin – PhD (Biology), Associate Professor

18, Kremlevskaya st., Kazan, 420008



I. A. Sahabiev
Kazan Federal University
Russian Federation

Ilnas A. Sahabiev – Senior Lecturer

18, Kremlevskaya st., Kazan, 420008



E. V. Smirnova
Kazan Federal University
Russian Federation

Elena V. Smirnova – PhD (Biology), Associate Professor

18, Kremlevskaya st., Kazan, 420008



I. A. Urazmetov
Kazan Federal University
Russian Federation

Ildar A. Urazmetov – PhD (Pedagogic), Associate Professor

18, Kremlevskaya st., Kazan, 420008



R. V. Okunev
Kazan Federal University
Russian Federation

Rodion V. Okunev – PhD (Biology), Associate Professor

18, Kremlevskaya st., Kazan, 420008



K. A. Gordeeva
Kazan Federal University
Russian Federation

Karina A. Gordeeva – PhD student

18, Kremlevskaya st., Kazan, 420008



References

1. Al-Ruzouq R., Gibril M. A., Abdallah S., Kais A., Hamed O., Saeed Al-M., Mohamad K. (2020). Sensors, Features, and Machine Learning for Oil Spill Detection and Monitoring: A Review. Remote Sensing, 12, 3338. https://doi.org/10.3390/rs12203338

2. Andronikov S.V., Davidson D.A., Spiers R.B. (2000). Variability in Contamination by Heavy Metals: Sampling Implications. Water, Air, & Soil Pollution, 120, pp. 29–45. https://doi.org/10.1023/A:1005261522465

3. Beucher A., Adhikari K., Breuning-Madsen H., Greve M.B., Österholm P., Fröjdö S., Jensen N.H., Greve M.H. (2017). Mapping potential acid sulfate soils in Denmark using legacy data and LiDAR-based derivatives. Geoderma, 308, pp. 363–372. https://doi.org/10.1016/j.geoderma.2016.06.001

4. Biau G., Scornet E. (2016). A random forest guided tour. Test, 25, pp. 197–227. https://doi.org/10.1007/s11749-016-0481-7

5. Caubet M., Dobarco R. M., Arrouays D.,Minasny B., Saby N. (2019). Merging country, continental and global predictions of soil texture: Lessons from ensemble modelling in France. Geoderma, 337. pp. 99–110. https://doi.org/10.1016/j.geoderma.2018.09.007

6. Cho K.H., Sthiannopkao S., Pachepsky Y.A., Kim K.W., Kim J.H. (2011). Prediction of contamination potential of groundwater arsenic in Cambodia, Laos, and Thailand using artificial neural network. Water Res, 45(17), pp. 5535–5544. https://doi.org/10.1016/j.watres.2011.08.010

7. Cortes C., Vapnik V. (1995). Support-vector networks. Mach. Learn., 20, pp. 273–297. https://doi.org/10.1007/BF00994018

8. Cui Y.-Q., Yoneda M., Shimada Y., Matsui Y. (2016). Cost-Effective Strategy for the Investigation and Remediation of Polluted Soil Using Geostatistics and a Genetic Algorithm Approach. Journal of Environmental Protection, 07(01), pp. 99–115. https://doi.org/10.4236/jep.2016.71010

9. Deiss L., Margenot A.J., Culman S.W., Demyan M.S. (2020). Tuning support vector machines regression models improves prediction accuracy of soil properties in MIR spectroscopy, Geoderma, 365, 114227. https://doi.org/10.1016/j.geoderma.2020.114227

10. Digital soil cartography (2017). Moscow: RUDN University, 152 p. (In Russ.)

11. Einax J., Soldt U., Geostatistical investigations of polluted soils. (1995). Fresenius’ Journal of Analytical Chemistry, 351, pp. 48–53. https://doi.org/10.1016/j.envpol.2012.06.006

12. Grunwald S. (2009). Multi-criteria characterization of recent digital soil mapping and modeling approaches. Geoderma, 152, рр. 195–207. https://doi.org/10.1016/j.geoderma.2009.06.003

13. Güler C., Alpaslan M., Kurt M.A. (2010). Deciphering factors controlling trace element distribution in the soils of Karaduvar industrial-agricultural area (Mersin, SE Turkey). Environ Earth Sci, 60, pp. 203–218. https://doi.org/10.1007/s12665-009-0180-8

14. Ha H., Olson J.R., Bian L., Rogerson P.A. (2014). Analysis of Heavy Metal Sources in Soil Using Kriging Interpolation on Principal Components. Environmental Science & Technology, 48, pp. 4999–5007. https://doi.org/10.1021/es405083f

15. Harrell F.E.Jr. (2001). Regression Modeling Strategies. With Applications to Linear Models, Logistic Regression, and Survival Analysis. Springer, 507 p. https://doi.org/10.1007/978-1-4757-3462-1

16. Hengl T., Nussbaum M., Wright M.N., Heuvelink G.B.M., Gräler B. (2018). Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables. PeerJ, 6, e5518. https://doi.org/10.7717/peerj.5518

17. Hooda, P.S., Glavinandp R.J. (2005). A Practical Examination of the Use of Geostatistics in the Remediation of a Site with a Complex Metal Contamination History. Soil and Sediment Contamination, 14, pp. 155–169. https://doi.org/10.1080/15320380590911814

18. Juang K.-W., Liao W.-J., Liu T.-L., Tsui L., Lee D.-Y. (2008). Additional sampling based on regulation threshold and kriging variance to reduce the probability of false delineation in a contaminated site. Science of the Total Environment, 389, pp. 20–28. https://doi.org/10.1016/j.scitotenv.2007.08.025

19. Kabata-Pendias A. (2000). Trace Elements in Soils and Plants. CRC Press, 403 p. https://doi.org/10.1201/9781420039900

20. Laborczi A., Gábor S., Kaposi A., László P. (2018). Comparison of soil texture maps synthetized from standard depth layers with directly compiled products. Geoderma, 352, pp. 360–372. https://doi.org/10.1016/j.geoderma.2018.01.020

21. Levy D.B., Barbarrick K.A., Siemer E.G., Sommers L.E. (1992). Distribution and partitioning of trace metals in contaminated soils near Leadville, Colorado. J Environ Qual, 21, pp. 185–195. https://doi.org/10.2134/jeq1992.00472425002100020006x

22. Lin Y.-P., Cheng B.-Y., Chu H.-J., Chang T.-K., Yu H.-L. (2011). Assessing how heavy metal pollution and human activity are related by using logistic regression and kriging methods. Geoderma, 163(3–4), pp. 275–282. https://doi.org/10.1016/j.geoderma.2011.05.004

23. Lin Y.-P., Chu H.-J., Huang Y.-L., Cheng B.-Y., Chang T.-K. (2010). Modeling Spatial Uncertainty of Heavy Metal Content in Soil by Conditional Latin Hypercube Sampling and Geostatistical Simulation. Environmental Earth Sciences, 62, pp. 299–311. https://doi.org/10.1007/s12665-010-0523-5

24. Loiseau T., Arrouays D., Richer-de-Forges A., Lagacherie P., Ducommun C., Minasny B. (2021). Density of soil observations in digital soil mapping: A study in the Mayenne region, France. Geoderma Reg., 24, e00358. https://doi.org/10.1016/j.geodrs.2021.e00358

25. Lv J., Yang L., Zhang Z., Dai J. (2013). Factorial kriging and stepwise regression approach to identify environmental factors influencing spatial multiscale variability of heavy metals in soils. Journal of Hazardous Materials, 261(15), pp. 387–397. https://doi.org/10.1016/j.jhazmat.2013.07.065

26. Mahmoudzadeh H., Matinfar H.R., Taghizadeh-Mehrjardi R., Kerry R. (2020). Spatial prediction of soil organic carbon using machine learning techniques in western Iran. Geoderma Reg., 21, e00260. https://doi.org/10.1016/j.geodrs.2020.e00260

27. Matinfara H. R., Maghsodi Z., Mousavi S. R., Rahmani A. (2021). Evaluation and Prediction of Topsoil organic carbon using Machine learning and hybrid models at a Field-scale. Catena, 202, pp. 105258. https://doi.org/10.1016/j.catena.2021.105258

28. McBratney A.B., Mendonçа Santos M.L., Minasny B. (2003). On digital soil mapping. Geoderma, 117, pp. 3–52. https://doi.org/10.1016/S0016-7061(03)00223-4

29. Milillo T.M., Sinha G., Gardella J.A. (2012). Use of Geostatistics for Remediation Planning to Transcend Urban Political Boundaries. Environmental Pollution, 170, pp. 52–62. https://doi.org/10.1016/j.envpol.2012.06.006

30. Mishra R., Naseer M., Nilanjan R. (2016). Soil pollution: Causes, effects and control. Van Sangyan, 3, pp. 1–14.

31. Pahlavan-Rad M.R., Dahmardeh K., Brungard C. (2018). Predicting soil organic carbon concentrations in a low relief landscape, eastern Iran. Geoderma Reg., 15, e00195. https://doi.org/10.1016/j.geodrs.2018.e00195

32. Pasolli L., Notarnicola C., Bruzzone L. (2011). Estimating soil moisture with the support vector regression technique. IEEE Geosci. Remote Sens. Lett., 8, pp. 1080–1084. https://doi.org/10.1109/LGRS.2011.2156759

33. Paterson S., Minasny B., Mcbratney A. (2018). Spatial variability of Australian soil texture: A multiscale analysis. Geoderma, 309, pp. 60–74. https://doi.org/10.1016/j.geoderma.2017.09.005

34. Platenburg R.J.P.M., Tuinhof H., Bot A.P., Iwaco B.V. (1988). Geostatistics in Soil Pollution Research. Contaminated Soil ‘88. Springer, Dordrecht, pp. 209–211. https://doi.org/10.1007/978-94-009-2807-7_32

35. Ryazanov S. S., Ivanov D. V., Kulagina V. I. (2019). Heavy metals in topsoils of the Republic of Tatarstan. Russian Journal of Ecosystem Ecology, 4(3), pp. 1–14. https://doi.org/10.21685/2500-0578-2019-3-4

36. Saby N., Thioulouse J., Jolivet C., Ratie C., Boulonne L., Bispo A., Arrouays D. (2009). Multivariate analysis of the spatial patterns of 8 trace elemets using the French monitoring network data. Science of the Total Environment, 407, pp. 5644–5652. https://doi.org/10.1016/j.scitotenv.2009.07.002

37. Sakizadeh M., Martín J.A.R. (2021). Spatial methods to analyze the relationship between Spanish soil properties and cadmium content. Chemosphere, 268, 129347. https://doi.org/10.1016/j.chemosphere.2020.129347

38. Schneckenburger T., Thiele-Bruhn S. (2020). Sorption of PAHs and PAH derivatives in peat soil is affected by prehydration status: the role of SOM and sorbate properties. J Soils Sediments, 20, pp. 3644–3655. https://doi.org/10.1007/s11368-020-02695-z

39. Sergeev A.P., Buevich A.G., Baglaeva E.M., Shichkin A.V. (2019). Combining spatial autocorrelation with machine learning increases prediction accuracy of soil heavy metals. Catena, 174, pp. 425–435. https://doi.org/10.1016/j.catena.2018.11.037

40. Shi B., Ngueleu S.K., Rezanezhad F., Slowinski S., Pronk G.J., Smeaton C.M., Stevenson K., Al-Raoush R.I., Van Cappellen P. (2020) Sorption and Desorption of the Model Aromatic Hydrocarbons Naphthalene and Benzene: Effects of Temperature and Soil Composition. Front. Environ. Chem, 1, 581103. https://doi.org/10.3389/fenvc.2020.581103

41. Shi T., Yang C., Liu H., Wu C., Wang Z., Li H., Zhang H., Guo L., Wu G., Su F. (2021). Mapping lead concentrations in urban topsoil using proximal and remote sensing data and hybrid statistical approaches. Environmental Pollution, 272, 116041. https://doi.org/10.1016/j.envpol.2020.116041

42. Smola A.J., Scholköpf B. (2004). A tutorial on support vector regression. Stat. Comput., 14, pp. 199–222. https://doi.org/10.1023/B:STCO.0000035301.49549.88

43. Taghizadeh-Mehrjardi R., Schmidt K., Toomanian N., Heung B., Behrens T., Mosavi A., Band S.S., Amirian-Chakan A., Fathabadi A., Scholten T. (2021). Improving the spatial prediction of soil salinity in arid regions using wavelet transformation and support vector regression models. Geoderma, 383, 114793. https://doi.org/10.1016/j.geoderma.2020.114793

44. Tarasov D.A., Buevich A.G., Sergeev A.P., Shichkin A.V. (2018). High variation topsoil pollution forecasting in the Russian Subarctic: Using artificial neural networks combined with residual kriging, Applied Geochemistry, 88, Part B, pp. 188–197. https://doi.org/10.1016/j.apgeochem.2017.07.007

45. Tsibart A.S., Gennadiev A.N. (2013). Polycyclic aromatic hydrocarbons in soils: sources, behavior, and indication significance (a review). Eurasian Soil Science, 46(7), pp. 728–741. https://doi.org/10.1134/S1064229313070090

46. Vincent S., Lemercier B., Berthier L., Walte C. (2018). Spatial disaggregation of complex Soil Map Units at the regional scale based on soil-landscape relationships. Geoderma, 311, pp. 130–142. https://doi.org/10.1016/j.geoderma.2016.06.006

47. Were K., Bui D.T., Dick Ø.B., Singh B.R. (2015). A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape. Ecol. Indic., 52, pp. 394–403. https://doi.org/10.1016/j.ecolind.2014.12.028

48. Yuan G., Sun T., Han P., Li J. (2013). Environmental geochemical mapping and multivariate geostatistical analysis of heavy metals in topsoils of a closed steel smelter: Capital Iron and Steel Factory, Bejing, China. Journal of Geochemical Exploration, 130, pp. 15–21. https://doi.org/10.1016/j.gexplo.2013.02.010

49. Zhang L., Liu Y., Li X., Huang L., Yu D., Shi X., Chen H., Xing S. (2018). Effects of soil map scales on simulating soil organic carbon changes of upland soils in Eastern China. Geoderma, 312, pp. 159–169. https://doi.org/10.1016/j.geoderma.2017.10.017

50. Zwolak A., Sarzyńska M., Szpyrka E., Stawarczyk K. (2019). Sources of Soil Pollution by Heavy Metals and Their Accumulation in Vegetables: a Review. Water, Air, & Soil Pollution, 230(164). https://doi.org/10.1007/s11270-019-4221-y


Review

For citations:


Giniyatullin K.G., Sahabiev I.A., Smirnova E.V., Urazmetov I.A., Okunev R.V., Gordeeva K.A. Digital mapping of indicators that determine the sorption properties of soils in relation to pollutants, according to remote sensing data of the Earth using machine learning. Georesursy = Georesources. 2022;24(1):84-92. (In Russ.) https://doi.org/10.18599/grs.2022.1.8

Views: 124


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1608-5043 (Print)
ISSN 1608-5078 (Online)