Preview

Georesources

Advanced search

Application of core X-ray microtomography in oilfield geology

https://doi.org/10.18599/grs.2021.4.4

Abstract

The article presents studies devoted to the practical application of computer X-ray microtomography (micro-CT) in oilfield geology. In particular, the authors give results of using the method for sample defectoscopy before petrophysical studies in order to improve the quality of analyzes. The paper includes an example of assessing the depth of core plugging with drilling fluid; assessing the mineral composition by micro-CT; experimental core studies when modeling the thermal effect on the oil source rocks of the Bazhenov formation. The authors also examine the current state of research in the field of digital petrophysics or digital core. The study is aimed at introducing the micro-CT method into the oilfield process.

About the Authors

A. A. Ponomarev
Tyumen Industrial University
Russian Federation

Andrey A. Ponomarev – Assistant of Department of Oil and Gas Field Geology, Junior Researcher of Laboratory of Well Workover and Flow Stimulation Technologies

38 Volodarskogo st., Tyumen, 625000



M. D. Zavatsky
Tyumen Industrial University
Russian Federation

Mikhail D. Zavatsky – Professor, Department of Oil and Gas Fields Geology

38 Volodarskogo st., Tyumen, 625000



T. S. Nurullina
Tyumen Industrial University
Russian Federation

Tatiana S. Nurullina – Junior Researcher, Laboratory of Well Workover and Flow Stimulation Technologies

38 Volodarskogo st., Tyumen, 625000



M. A. Kadyrov
Tyumen Industrial University; TyumenNefteTechnology LLC
Russian Federation

Marsel A. Kadyrov – Postgraduate Student;

Director

38 Volodarskogo st., Tyumen, 625000



K. A. Galinsky
Tyumen Industrial University
Russian Federation

Kirill A. Galinsky – Senior Lecturer, Department of Oil and Gas Field Geology

38 Volodarskogo st., Tyumen, 625000



O. A. Tugushev
TyumenNefteTechnology LLC
Russian Federation

Oskar A. Tugushev – Geologist

Of. 86, bld. 1, 13 VLKSM 50 let st., Tyumen, 625048



References

1. Alhosani Abdulla, Scanziani Alessio, Lin Qingyang, Pan Ziqing, Bijeljic Branko, Blunt Martin J. (2019). In situ pore-scale analysis of oil recovery during three-phase near-miscible CO2 injection in a water-wet carbonate rock. Advances in Water Resources, 134. https://doi.org/10.1016/j.advwatres.2019.103432

2. Belozerov I.P., Gubaidullin M.G. (2020). On the concept of technology for determining filtration-volume properties of terrigenous reservoirs using a digital core model. Zapiski Gornogo Instituta = Journal of Mining Institute, 244, pp. 402–407. (In Russ.) https://doi.org/10.31897/pmi.2020.4.2

3. Bembel S.R., Aleksandrov V.M., Ponomarev A.A., Markov P.V., Rodionov S.P. (2019). Evaluation of filtration-capacitive properties of complex reservoir rocks using the results of core microtomography. Neftyanoe khozyaystvo = Oil industry, 8, pp. 86–89. (In Russ.) https://doi.org/10.24887/0028-2448-2019-8-86-88

4. Chugunov S.S., Kazak A.V., Cheremisin A.N. (2015). A combination of X-ray microtomography and three-dimensional electron microscopy methods in the study of rocks of the Bazhenov Formation of Western Siberia. Neftyanoe khozyaystvo = Oil industry, 10, pp. 44–49. (In Russ.) https://doi.org/10.1016/j.rgg.2015.04.009

5. Faboya O.L., Sonibare O.O., Xu J.B., Olowookere N., Liao Z.W. (2020). Mineralogical and pore structure of organic-rich deltaic shales and sub-bituminous coals from early Maastrichtian Mamu Formation, Anambra Basin, Nigeria. Sn Applied Sciences, 2(12). https://doi.org/10.1007/s42452-020-03899-1

6. Fanqi Qin, Lauren E. (2019). Beckingham. Impact of image resolution on quantification of mineral abundances and accessible surface areas. Chemical Geology, 523, pp. 31–41. https://doi.org/10.1016/j.chemgeo.2019.06.004

7. Fazliakhmetov A.M., Ponomarev A.A. (2020). Comparative analysis of X-ray microtomography and optical microscopy in study of complex clastic rocks. Geologicheskiy vestnik, 3, pp. 76–83. (In Russ.) https://doi.org/10.31084/2619-0087/2020-3-6

8. Galkin S.V., Efimov A.A., Krivoschekov S.N., Savitsky Y.V., Cherepanov S.S. (2015). X-ray tomography in petrophysical studies of core samples from oil and gas fields. Russian Geology and Geophysics, 56(5), pp. 782–792.

9. Gafurova D., Kalmykov A., Korost D., Kalmykov G. (2021) Macropores generation in the domanic formation shales: Insights from pyrolysis experiments. Fuel, 289. https://doi.org/10.1016/j.fuel.2020.119933

10. Gerke K.M., Korost D.V., Vasiliev R.V., Karsanina M.V., Tarasovsky V.P. (2015). Studying structure and determining effective properties of materials using X-ray microtomography data (using permeable porous ceramics as an example). Inorganic Materials, 51(9), pp. 951–957. https://doi.org/10.1134/S002016851509006X

11. Gerke K.M., Sizonenko T.O., Karsanina M.V., Korost D.V., Bayuk I.O. (2018). Upskelling of rock filtration characteristics using gridded models. GeoEurasia 2018: Proc. Int. Conf., pp. 474–477. (In Russ.)

12. Gerke K.M., Karsanina M.V., Sizonenko T.O., Miao X., Gafurova D.R., Korost D.V. (2017). Multi-scale image fusion of x-ray microtomography and sem data to model flow and transport properties for complex rocks on pore-level. SPE Russian Petroleum Technology Conference. https://doi.org/10.2118/187874-MS

13. Gilmanov Ya.I., Vakhrusheva I.A. (2019). Digitalization of core studies today, tomorrow – a view of Tyumen oil Science Centre. Nedropolzovanie XXI vek, 5(81), pp. 124–131. (In Russ.)

14. Gilmanov Ya.I., Salomatin E.N., Vakhrusheva I.A. (2019). Experience of Tyumen oil Science Centre in investigating unconsolidated and weakly consolidated core. Karotazhnik, 6(300), pp. 14–22. (In Russ.)

15. Gholami R., Safari M., Raza A., Downey W.S., Momeni M.S., Ganat T.A.O. (2019). A field scale approach to determine compaction-based permeability in unconsolidated reservoirs. Journal Of Natural Gas Science And Engineering, 68. https://doi.org/10.1016/j.jngse.2019.102909

16. Katika K., Fordsmand H., Fabricius I.L. (2018). Low field NMR surface relaxivity studies of chalk and argillaceous sandstones. Microporous And Mesoporous Materials, 269, pp. 122–124. https://doi.org/10.1016/j.micromeso.2017.06.035

17. Korost D.V. (2012). Heterogeneity in the structure of terrigenous reservoirs and types of their void space structure (by the example of the upper part of the Tyumen Formation of the Urnenskoye oil field in Western Siberia). Cand. geol.-min. sci. diss. Moscow: MSU. (In Russ.)

18. Korost D.V., Kalmykov G.A., Yapaskurt V.O., Ivanov M.K. (2010). Application of computational microtomography to study the structure of terrigenous reservoirs. Geologiya nefti i gaza = Russian Oil and Gas Geology, 2, pp. 36–42. (In Russ.)

19. Korost, D.V., Nadezhkin, D.V. & Akhmanov, G.G. (2012). Pore space in source rock during the generation of hydrocarbons. Moscow Univ. Geol. Bull., 67, pp. 240–246. https://doi.org/10.3103/S0145875212040059

20. Kurchikov A.R., Yagafarov A.K., Popov I.P., Aleksandrov V.M., Ponomarev A.A., Zavatsky M.D., Kadyrov M.A. (2017). Distinguishing of the sediments with different genesis by results of core microtomography. SOCAR Proceedings, 4, pp. 16–26. https://doi.org/10.5510/OGP20170400326

21. Kushzhanov N.V, Mahammadli D. (2019). The digital transformation of the oil and gas sector in kazakhstan: priorities and problems. News of the national academy of sciences of the republic of Kazakhstanseries of geology and technical sciences, 3, pp. 203–212. https://doi.org/10.32014/2019.2518-170X.86

22. Lazeev A.N., Timashev E.O., Vakhrusheva I.A., Serkin M.F., Gilmanov Y.I. (2018). Digital core – current state and prospects of technology development in ROSNEFT PJSC. Neftyanoe khozyaystvo = Oil industry, 11, pp. 18–22. (In Russ.) https://doi.org/10.24887/0028-2448-2018-11-18-22

23. Lei Q., Zhang L.H., Tang H.M., Zhao Y.L., Chen M., Xie C.Y. (2021). Quantitative study of different patterns of microscale residual water and their effect on gas permeability through digital core analysis. Journal Of Petroleum Science And Engineering, 196. https://doi.org/10.1016/j.petrol.2020.108053

24. Lin W., Li X., Yang Z., Xiong S., Luo Y. and Zhao X. (2019). Modeling of 3D Rock Porous Media by Combining X-Ray CT and Markov Chain Monte Carlo. ASME. J. Energy Resour. Technol, 142(1). https://doi.org/10.1115/1.4045461

25. Markov P.V., Rodionov S.P. (2018). A method for stochastic generation of pore network models by their parameter distributions. Vestnik kibernetiki = Proceedings in Cybernetics, 3(23), pp. 18–24. (In Russ.)

26. Mees F., Swennen R., Van Geet, M. & Jacobs P. (2003). Applications of X-ray Computed Tomography in the Geosciences. Geological Society, London, Special Publications, 215, pp. 1–6. https://doi.org/10.1144/GSL.SP.2003.215.01.01

27. Mehmani Ayaz, Kelly Shaina, Torres-Verdín Carlos (2020). Leveraging digital rock physics workflows in unconventional petrophysics: A review of opportunities, challenges, and benchmarking. Journal of Petroleum Science and Engineering, 190. https://doi.org/10.1016/j.petrol.2020.107083

28. Mukhametdinova A., Kazak A., Karamov T., Bogdanovich N., Serkin M., Melekhin S., Cheremisin A. (2020). Reservoir Properties of Low-Permeable Carbonate Rocks: Experimental Features. Energies, 13(9). https://doi.org/10.3390/en13092233

29. Nadeev A.N., Kazak A.V., Varfolomeev I.A., Koroteev D.A., Korobkov D.A., Bolychev E.A., Lebedev S.V. (2013). Study of changes in the structure of weakly cemented rocks by X-ray microtomography. Neft’. Gaz. Novatsii, 4, pp. 23–26. (In Russ.)

30. Orlov D., Ebadi M., Muravleva E., Volkhonskiy D., Erofeev A., Savenkov E., Balashov V., Belozerov B., Krutko V., Yakimchuk I., Evseev N., Koroteev D. (2021). Different methods of permeability calculation in digital twins of tight sandstones. Journal of Natural Gas Science and Engineering, 87. https://doi.org/10.1016/j.jngse.2020.103750

31. Ortega-Ramírez M.P., Oxarango L. (2021). Effect of X-ray μCT Resolution on the Computation of Permeability and Dispersion Coefficient for Granular Soils. Transp Porous Med, 137, pp. 307–326. https://doi.org/10.1007/s11242-021-01557-7

32. Parfenov V. G., Zavatsky M. D., Nikiforov A. S., Ponomarev A. A. (2018). Method for investigation of spatial distribution of oil in pore space of soils and other porous media. RF patent 2654975. (In Russ.)

33. Ponomarev A.A. (2019). Methodology for indirect assessment of the presence of oil generation in clay-bituminous rocks under the influence of microwave waves. Tekhnologii nefti i gaza, 2(121), pp. 28–31. (In Russ.) https://doi.org/10.32935/1815-2600-2019-121-2-28-31

34. PonomarevA.A., Zavatsky M.D. (2015). Methods of application of computer microtomography in geology. Izvestiya vysshikh uchebnykh zavedeniy. Neft’ i gaz = Oil and Gas Studies, 3, pp. 31–35. (In Russ.) https://doi.org/10.31660/0445-0108-2015-3-31-35

35. Reyes F., Lin Q., Udoudo O., Dodds C., Lee P.D., Neethling S.J. (2017). Calibrated X-ray micro-tomography for mineral ore quantification. Minerals Engineering, 110, pp. 122–130. https://doi.org/10.1016/j.mineng.2017.04.015

36. Ryzhikov N.I. (2014). Experimental study of colmatation zone structure and kinetics of its formation. Proc. 68th International Youth Conference: Oil and Gas 2014. (In Russ.)

37. Ryzhikov N.I., Mikhailov D.N., Shako V.V. (2013). A method for calculating the distribution profiles of porosity and volume fractions of materials in porous media using X-ray microtomography data analysis. Proc. MIPT, 4(20), pp. 161–169. (In Russ.)

38. Saxena N., Dietderich J., Alpak F.O., Hows A., Appel M., Freeman J., Hofmann R., Zhao B.C. (2021). Estimating electrical cementation and saturation exponents using digital rock physics. Journal of petroleum science and engineering, 198. https://doi.org/10.1016/j.petrol.2020.108198

39. Saxena Nishank, Dietderich Jesse, Faruk O. Alpak, Amie Hows, Matthias Appel, Justin Freeman, Ronny Hofmann, Bochao Zhao. (2021). Estimating electrical cementation and saturation exponents using digital rock physics. Journal of Petroleum Science and Engineering, 198. https://doi.org/10.1016/j.petrol.2020.108198

40. Saxena Nishank, Dietderich Jesse, Faruk O. Alpak, Amie Hows, Matthias Appel, Justin Freeman, Ronny Hofmann, Bochao Zhao. (2021). Estimating electrical cementation and saturation exponents using digital rock physics. Journal of Petroleum Science and Engineering, 198. https://doi.org/10.1016/j.petrol.2020.108198

41. Shabarov A.B., Shatalov A.V., Markov P.V., Shatalova N.V. (2018). Methods for determining relative phase permeability functions in multiphase filtration problems. Tyumen State University Herald. Physical and Mathematical Modeling. Oil, Gas, Energy, 4(1), pp. 79–109. (In Russ.)

42. Slaughter A. (2020). Bits Bytes and Barrels-The Digital Transformation of Oil and Gas. Energy Journal, 41(1), pp. 289–291.

43. Sun Huafeng, Belhaj Hadi, Tao Guo, Vega Sandra, Liu Luofu. (2019). Rock properties evaluation for carbonate reservoir characterization with multiscale digital rock images. Journal of Petroleum Science and Engineering, 175, pp. 654–664. https://doi.org/10.1016/j.petrol.2018.12.075

44. Tan Maojin, Su Mengning, Liu Weihua, Song Xiaodong, Wang Siyu (2021). Digital core construction of fractured carbonate rocks and pore-scale analysis of acoustic properties. Journal of Petroleum Science and Engineering, 196. https://doi.org/10.1016/j.petrol.2020.107771

45. Tarik Saif, Qingyang Lin, Branko Bijeljic, Martin J. Blunt. (2017). Microstructural imaging and characterization of oil shale before and after pyrolysis. Fuel, 197, pp. 562–574. https://doi.org/10.1016/j.fuel.2017.02.030

46. Teles A.P., Lopes R.T., Lima I. (2017). Dual Energy Microtomography Applied to Oil and Gas Assessments. In: Oral A., Bahsi Oral Z. (eds) 3rd International Multidisciplinary Microscopy and Microanalysis Congress (InterM). Springer Proceedings in Physics, 186. https://doi.org/10.1007/978-3-319-46601-9_28

47. Yang L., Wang S., Jiang Q.P., You Y., Gao J. (2020). Effects of Microstructure and Rock Mineralogy on Movable Fluid Saturation in Tight Reservoirs. Energy & Fuels, 34(11), pp. 14515–14526. https://doi.org/10.1021/acs.energyfuels.0c02273

48. Yun She, Chunwei Zhang, Mohammad Azis Mahardika, Anindityo Patmonoaji, Yingxue Hu, Shintaro Matsushita, Tetsuya Suekane. (2021). Pore-scale study of in-situ surfactant flooding with strong oil emulsification in sandstone based on X-ray microtomography. Journal of Industrial and Engineering Chemistry, 3. https://doi.org/10.1016/j.jiec.2021.03.046

49. Zhizhimontov I.N., Zaray E.A., Gilmanov Yan.I., Utkin P.S., Bobrov S.E. (2020). Features of a petrophysical model considering salinization of terrigenous rocks by the example of East Siberian field. Karotazhnik, 4(304), pp. 3–18. (In Russ.) https://doi.org/10.21684/2411-7978-2018-4-1-79-109


Review

For citations:


Ponomarev A.A., Zavatsky M.D., Nurullina T.S., Kadyrov M.A., Galinsky K.A., Tugushev O.A. Application of core X-ray microtomography in oilfield geology. Georesursy = Georesources. 2021;23(4):34-43. (In Russ.) https://doi.org/10.18599/grs.2021.4.4

Views: 290


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1608-5043 (Print)
ISSN 1608-5078 (Online)