Typomorphic characteristic of gold from tailings of pyrite-polymetallic deposits of Siberian
https://doi.org/10.18599/grs.2021.3.18
Abstract
The long-term stored tailings of the ore concentration of pyrite-polymetallic ore deposits are an ideal natural laboratory in which it is possible to study the gold transformation from primary ores to supergene with superimposed anthropogenic characteristics. The typomorphic characteristics of native gold are studied on the example of technogenic-mineral formations (TMF) of the Novo-Ursk, Belokluch and Zmeinogorsk deposits (Western Siberia). The grain size distribution of gold and its concentration, morphology, internal structure and chemical composition shows the features of gold conversion in the processes of dissolution, migration and secondary deposition at geochemical barriers.
As a result of a typomorphic analysis, external and internal signs were identified that prove that gold underwent supergene transformations directly in the body of the technogenic tailings. The growths and accumulations of nano- and microsize gold, the formation of particles of aggregate structure, lamination, fine particles and veinlets, openwork edges, as well as the absence of physical damage on the surface of the golds, confirm the active mobility of gold at the scales of tailings and emphasize the complex nature of multi-stage processes of gold mobilization.
The gold formation of different chemical composition in TMF is explained by specific physical and chemical conditions for the section of the mound of stored waste, different sources of primary gold and geochemical barriers. Au(S2 O3 )n (1-2n) and Au(HS)2 – are the main complexes responsible for the mobility of gold. Gold of low and medium fineness is formed from thiosulfate complexes, whereas high-fineness gold is formed from hydrosulfide complexes.
About the Authors
A. Sh. KhusainovaRussian Federation
Alfiya Sh. Khusainova – PhD (Geology and Mineralogy), Junior Researcher, Laboratory of Structural Petrology
3, Ac. Koptyug Av., 3 Novosibirsk, 630090
Yu. A. Kalinin
Russian Federation
Yury A. Kalinin – DSc (Geology and Mineralogy), Chief Researcher of the Laboratory of Forecasting and Metallogenic Researches
3, Ac. Koptyug Av., 3 Novosibirsk, 630090
O. L. Gaskova
Russian Federation
Olga L. Gaskova – DSc (Geology and Mineralogy), Leading Researcher of the Laboratory of Ore Forming Systems
3, Ac. Koptyug Av., 3 Novosibirsk, 630090
S. B. Bortnikova
Russian Federation
Svetlana B. Bortnikova – DSc (Geology and Mineralogy), Head of Geoelectrochemistry Laboratory
3, Ac. Koptyug Av., 3 Novosibirsk, 630090
References
1. Banshchikova T.S., Litvintsev V.S., Ponomarchuk G.P. (2010). Morphological characteristics of tecnogenic gold and patterns of its spatial location in dump complexes. Proc. XV Int. Meet. on Geology of Placers and Deposits of Weathering Crusts. Novosibirsk: IGM SO RAN, pp. 82–86. (In Russ.)
2. Birich A., Stopic S., Friendrich B. (2019). Kinetic Investigation and Dissolution Behavior of Cyanide Alternative Gold Leaching Reagents. Scientific Reports, 9. https://doi.org/10.1038/s41598-019-43383-4
3. Bolgov G.P. (1937). Salaire sulfides, Ursk group of polymetallic deposits. Izv. Tomsk. Polytechnic Inst., (11), pp. 45–96. (In Russ.)
4. Boyle R.W. (1979) The geochemistry of gold and its deposits. Geol. Surv. Canada, Bull., 280, 584 p.
5. Cherepnin V.K. (1953). The question of the composition and genesis of the ores of the Ursk deposits (Salair). Izv. Tomsk. Polytechnic Inst., 90, pp. 56–68. (In Russ.)
6. Craw D., Lilly K. (2016). Gold nugget morphology and geochemical environments of nugget formation, southern New Zealand. Ore Geology Reviews, 79, pp. 301–315. https://doi.org/10.1016/j.oregeorev.2016.06.001
7. Derbikov I.V. (1937). Novo-Ursk polymetallic deposit. Material on the geology of the West Siberia region, 42, 58 p. (In Russ.)
8. Distanov E.G. (1977). Pyrite-polymetallic deposits of Siberia. Novosibirsk: Nauka, 351 p. (In Russ.)
9. Dunn S.C., Heyden B.P., Rozendaal A., Taljaard R. (2019). Secondary gold mineralization in the Amani Placer Gold Deposit, Tanzania. Ore Geology Reviews, 107, pp. 87–107. https://doi.org/10.1016/j.oregeorev.2019.02.011
10. Etschmann B., Brugger J., Fairbrother L., Grosse C., Nies D.H., MartinezCriado G., Reith F. (2016). Applying the Midas touch: Differing toxicity ofmobile gold and platinum complexes drives biomineralization in the bacterium Cupriavidus metallidurans. Chemical Geology, 438, pp. 103–111. https://doi.org/10.1016/j.chemgeo.2016.05.024
11. Fairbrother L., Brugger J., Shapter J., Laird J.S., Southam G., Reith F. (2012). Supergene gold transformation: Biogenic secondary and nanoparticulate gold from arid Australia. Chemical Geology, 320–321, pp. 17–31. https://doi.org/10.1016/j.chemgeo.2012.05.025
12. Falconer D.M., Craw D. (2009). Supergene gold mobility: a textural and geochemical study from gold placers in southern New Zealand. Society of Economic Geologists, 14, pp. 77–93. https://doi.org/10.5382/SP.14.08
13. Friese F.W. (1931). The transportation of gold by organic underground solutions. Econ. Geol., 26(4), pp. 421–431. https://doi.org/10.2113/gsecongeo.26.4.421
14. Gaskova O.L., Bortnikova S.B., Airiyants A.A., Kolmogorov Yu.P., Pashkov M.V. (2000). Geochemical features of an anthropogenic impoundment with cyanidation wastes of gold-arsenopyrite-quartz ores. Geochemistry International, 38(3), pp. 281–291.
15. Gustaytis M.A., Myagkaya I.N., Chumbaev A.S. (2018). Hg in snow cover and snowmelt waters in high-sulfide tailing regions (Ursk tailing dump site, Kemerovo region, Russia). Chemosphere, 202, pp. 446–459. https://doi.org/10.1016/j.chemosphere.2018.03.076
16. Hong H., Tie L. (2005). Characteristics of the minerals associated with gold in the Shewushan supergene gold deposit, China. Clays Clay Miner, 53, pp. 162–170. https://doi.org/10.1346/CCMN.2005.0530206
17. Hough R.M., Butt C.R.M., Reddy S.M., Verrall M. (2007). Gold nuggets: supergene or hypogene? Aust. J. Earth Sci., 54, pp. 959–964, https://doi.org/10.1080/08120090701488289
18. Hyland M.M., Bancroft G.M. (1989). An XPS study of gold deposition at low temperatures on sulphide minerals: reducing agents. Geochim. Cosmochim. Acta, 53, pp. 367–372. https://doi.org/10.1016/0016-7037(89)90388-8
19. Kalinin Yu.A., Roslyakov N.A., Prudnikov S.G. (2006). Gold-bearing weathering crust of the southern Siberia. Novosibirsk: Geo, 339 p. (In Russ.)
20. Kalinin Yu.A., Kovalev K.R., Naumov E.A., Kirillov M.V. (2009). Gold in the weathering crust at the Suzdal deposit (Kazakhstan). Russian Geology and Geophysics, 50(3), pp. 174–187. https://doi.org/10.1016/j.rgg.2008.09.002
21. Kalinin Y.A., Palyanova G.A., Kovalev K.R., Naumov E.A., Pirajno F. (2019). Supergene remobilization of Au in Au-bearing regolith related to orogenic deposits: a case study from Kazakhstan. Ore Geology Reviews, 109, pp. 358–369. https://doi.org/10.1016/j.oregeorev.2019.04.019
22. Khazov A.F., Petrovskii D.V. (2007). Genetic features of supergene modified gold in weathering crusts. Doklady Earth Sciences, 416(1), pp. 1128–1131. https://doi.org/10.1134/S1028334X07070331
23. Kharlamova V.Yu. (2018). Highly stable complexes of gold (I) with sulfur-containing ligands in aqueous solution. Abstract. Sci. Diss. INKh SB RAS, 22 p. (In Russ.)
24. Khusainova A.Sh., Naumov V.A., Naumova O.B. (2019). Differentiation of gold particles after gravity concentration (Tardan deposit, Tuva Republic, Russia). Bulletin of Perm University. Geology = Vestnik Permskogo universiteta. Geologiya, 18(3), pp. 276–285. https://doi.org/10.17072/psu.geol.18.3.276
25. Khusainova А.Sh., Gaskova О.L., Kalinin Yu.А., Bortnikova S.B. (2020) Physical-chemical model of gold transformation in the pyrite-polymetallic ores treatment wastes (Ursk, Kemerovo Region, Russia). Russian Geology and Geophysics, 61(9), pp. 1181–1193. https://doi.org/10.15372/GiG2020120
26. Kim А.А. (1975). Analysis of the mineralogical features of native gold in primary and oxidized ores of deposits of Central Aldan. Ancient weathering crust of Yakutia. Yakutsk, pp. 109–127. (In Russ.)
27. Kirillov M.V., Bortnikov S.B., Gaskova O.L., Shevko E.P. (2018). Authigenic gold in stale tailings of cyanide leaching of gold-sulfidequartz ores (Komsomol’skii gold-extracting factory, Kemerovo Region). Doklady Earth Sciences, 481(2), pp. 1091–1094. https://doi.org/10.1134/S1028334X18080299
28. Kovalev K.R. (1969). Features of the formation of ores of pyritepolymetallic deposits of the North-Eastern Salair and East Tuva. Abstract Sci. Diss. Novosibirsk, 283 p. (In Russ.)
29. Kovlekov I.I. (2002). Technogenic gold of Yakutia. Moscow: Moscow State University, 303 p. (In Russ.)
30. Krasnova N.I., Petrov T.G. (1997). The genesis of mineral individuals and aggregates. St.Petersburg: Nevskiy kur’er, 228 p. (In Russ.)
31. Kuznetsova I.V., Safronov P.P., Moiseenko N.V. (2019). Matter-mineral characteristics of technogene placers – potential sources of precious metals (on the example of the Nizhneselemdzhinsky gold-bearing node of Priamurye, Russia). Georesursy = Georesources, 21(1), pp. 2–14. https://doi.org/10.18599/grs.2019.2.3-14
32. Kuzhuget R.V. (2014). Iodide and bromide mineralization in oxidized ores of the Khaak-sair gold-ore deposit, Western Tuva. Zapiski RMO = Proceedings of the Russian Mineralogical Society, CXLIII, 2, pp. 64–80. (In Russ.)
33. Kuzhuget R.V., Mongush A.A., Oorzhak Sh.N., Butanaev Yu.V. (2018). Iodine-bearing minerals of chlorargyrite-bromargyrite series in oxidized ores of the Khaak-sair and the Tardan-2 gold-quartz ore occurrences (Tuva, Russia). Izv. Tomsk polit. un-ta, Inzhiniring georesursov = Bulletin of the Tomsk Polytechnic University. Geo Аssets Engineering, 329(12), pp. 80–93. (In Russ.)
34. Lengke M.F., Southam G. (2005). The effect of thiosulfate-oxidizing bacteria on the stability of the gold-thiosulfate complex. Geochim. Cosmochim. Acta, 69, pp. 3759–3772. https://doi.org/10.1016/j.gca.2005.03.012
35. Litvintsev V.S., Leonenko N.A., Banshchikova T.S. (2016). Typomorphic gold specifications in the anthropogenic placer from Priamurye in terms of innovation technology. Tikhookeanskaya Geologiya, 35(4), pp. 89–99. (In Russ.)
36. Liua X., Jianga T., Xua B., Zhang Y., Lia Q., Yanga Y., He Y. (2020). Thiosulphate leaching of gold in the Cu–NH3 –S2 O3 2−–H2 O system: An updated thermodynamic analysis using predominance area and species distribution diagrams. Minerals Engineering, 151, 12 p. https://doi.org/10.1016/j.mineng.2020.106336
37. Makarov V.A. (2001). Conditions for the formation of technogenic gold-bearing objects and features of the methodology for their geological and technological assessment. Abstract. Sci. Dis. Krasnoyarsk, 33 p. (In Russ.)
38. Mann A.W. (1984). Mobility of gold and silver in lateritic weathering profiles: some observations from Western Australia. Econ. Geol., 79(1), pp. 38–49. https://doi.org/10.2113/gsecongeo.79.1.38
39. Myagkaya I.N., Lazareva E.V., Gustaytis M.A., Zhmodik S.M. (2016). Gold and silver in a system of sulfide tailings. Part 1: Migration in water flow. Journal of Geochemical Exploration, 160, pp. 16–30. https://doi.org/10.1016/j.gexplo.2015.10.004
40. Myagkaya I.N., Lazareva E.V., Gustaytis M.A., Zhmodik S.M. (2016). Gold and silver in a system of sulfide tailings. Part 2: Reprecipitation on natural peat. Journal of Geochemical Exploration, 165, pp. 8–22. https://doi.org/10.1016/j.gexplo.2016.01.016
41. Myagkaya I.N., Lazareva E.V., Zaikovskii V.I., Zhmodik S.M. (2020). Interaction of natural organic matter with acid mine drainage: Authigenic mineralization (case study of Ursk sulfide tailings, Kemerovo region, Russia). Journal of Geochemical Exploration, 211, 12 p. https://doi.org/10.1016/j.gexplo.2019.106456
42. Myagkaya I.N., Lazareva E.V., Zhmodik S.M., Gustaytis M.A. (2013). Distribution of gold and silver in in the dispersion stream of the Ursk tailings (Kemerovo region). Proc. XXV Russ. Conf.: Structure of the lithosphere and geodynamics, pp. 60–62. (In Russ.)
43. Mycroft J.R., Bancroft G.M., Mcintyre N.S., Lorimer J.W. (1995). Spontaneous deposition of gold on pyrite from solutions containing Au(III) and Au(I) chlorides. 1. A surface study. Geochim. Cosmochim. Acta, 59, pp. 3351–3365. https://doi.org/10.1016/0016-7037(95)00211-H
44. Naumov V.А. (2010). Minerageny, technogenesis and prospects for the integrated development of gold-bearing alluvium. Abstract Sci. Diss. Perm: PSU, 42 p. (In Russ.)
45. Nesterenko G.V. (1991). Forecast for placer gold mineralization. Novosibirsk: Nauka, 200 p. (In Russ.)
46. Nesterenko G.V., Kuznetsova A.I., Pal’chik N.A., Lavrent’ev Yu.G. (1984). Petrovskaite AuAg (S, Se) – a new selenium-containing sulfide of gold and silver. Zap. Vsesoyuzn. mineral. obshch., 4(5), pp. 602–607. (In Russ.)
47. Nikolaeva L.A., Gavrilov A.M., Nekrasova A.N., Yablokova S.V., Shatilova L.V (2015). Native gold of ore and placer deposits in Russia: atlas. Moscow: TsNIGRI, 200 p. (In Russ.)
48. Nikolaeva L.A., Yablokova S.V. (2007). Typomorphic features of native gold and their use in exploration. Rudy i metally, 6, pp. 41–57. (In Russ.)
49. Olenchenko V.V., Kucher D.O., Bortnikova S.B., Edelev A.V., Gas’kova O.L., Gora M.P. (2016). Vertical and lateral spreading of highly mineralized acid drainage solutions (Ur dump, Salair): electrical resistivity tomography and hydrogeochemical data. Russian Geology and Geophysics, 57(4), pp. 617–628. https://doi.org/10.15372/GiG20160410
50. Osovetskiy B.M. (2012). Nanosculpture of the surface of gold. Perm: PSU, 232 p. (In Russ.)
51. Osovetskiy B.M. (2013). Natural nanogold. Perm: PSU, 176 p. (In Russ.)
52. Pal’yanova G.A., Kokh K.A.,Seryotkin Y.V. (2011). Formation of gold and silver sulfides in the system Ag-Au-S. Russian Geology and Geophysics, 52(4), pp. 443–449. (In Russ.) https://doi.org/10.1016/j.rgg.2011.03.006
53. Plyusnin A.M., Pogrebnyak Yu.F. (1979). An experimental study of the gold behavior in the oxidation zones conditions of sulfide deposits. Geologiya rudnyh mestorozhdeniy = Geology of Ore Deposits, 21(1), pp. 106–109. (In Russ.)
54. Petrovskaya N.V. (1973). Native gold. Moscow: Nauka, 348 p. (In Russ.)
55. Polovnikova L.M. (2009). Geological report on the technogenic formations of the tailing dump of the Zmeinogorsk gold mining plant. Report, Rosnedra, 31 p. (In Russ.)
56. Reith F., Stewart L., Wakelin S.A. (2012). Supergene gold transformation: Secondary and nanoparticulate gold from southern New Zealand. Chemical Geology, 320–321, pp. 32–45. https://doi.org/10.1016/j.chemgeo.2012.05.021
57. Roslikova N.V., Shcherbakov Yu.G., Ageenko N.F., Portnyannikov D.I., Bortnikova S.B., Radosteva N.E. (1983). Gold conditions of pyritepolymetallic deposits. Trudy IGG, 533, pp. 31–65. (In Russ.)
58. Roslyakov N.A. (1981). Geochemistry of gold in the hypergenesis zone. Novosibirsk: Nauka, 237 p. (In Russ.)
59. Savva N.E., Paljanova G.A., Kolova E.E. (2010). Gold and Silver Minerals within Sulfide Enrichment Area (Krutoe Lode, Northeastern Russia). Bulletin of the North-East Scientific Center, Russia Academy of Sciences Far East Branch, 1, pp. 33–45. (In Russ.)
60. Senanayake G. (2004). Gold leaching in non-cyanide lixiviant systems: critical issues on fundamentals and applications. Minerals Engineering, 17(6), pp. 785–801. https://doi.org/10.1016/j.mineng.2004.01.008
61. Shuster J., Reith F. (2018). Reflecting on Gold Geomicrobiology Research: Thoughts and Considerations for Future Endeavors. Minerals, 8(9), 401. https://doi.org/10.3390/min8090401
62. Shuster J., Reith F., Cornelis G., Parsons J.E., Parsons J.M., Southam G. (2017). Secondary gold structures: Relics of past biogeochemical transformations and implications for colloidal gold dispersion in subtropical environments. Chemical Geology, 450, pp. 154–164. https://doi.org/10.1016/j.chemgeo.2016.12.027
63. Shvartsev S.L., Dutova E.M. (2001). Hydrogeochemistry and gold mobilization in the supergene zone (Kuznetsk Alatau, Russia). Geologiya rudnyh mestorozhdeniy = Geology of Ore Deposits, 43(3), pp. 252–261. (In Russ.)
64. Tauson V.L., Kvartsova R.G., Lipko S.V., Makshakov A.S., Arsent’ev K.Yu. (2018). Surface typochemistry of native gold. Doklady Earth Sciences, 480(1), pp. 624–630. DOI: 10.7868/S0869565218140165
65. Vlassopoulos D., Wood S.A. (1990). Gold speciation in natural waters: I. Solubility and hydrolysis reactions of gold in aqueous solution. Geochim. Cosmochim. Acta, 54(1), pp. 3–12. https://doi.org/10.1016/0016-7037(90)90189-R
66. Wang L., Wang H., Ma B., Wang Ch., Xing P., Ma R. (2019). Research on gold extraction from uytenbogaardtite via in situ microzone analysis. Hydrometallurgy, 186, pp. 170–175. https://doi.org/10.1016/j.hydromet.2019.04.013
67. Wierchowiec J., Mikulski St.Z., Gąsiński A. (2018). Nanoforms of gold from abandoned placer deposits of Wądroże Wielkie, Lower Silesia, Poland – The evidence of authigenic gold mineralization. Ore Geology Reviews, 101, pp. 211–220. https://doi.org/10.1016/j.oregeorev.2018.07.009
68. Yurkevich N., Bortnikova S., Abrosimova N., Makas A., Olenchenko V., Yurkevich Nic., Edelev A., Saeva O., Shevko A. (2019). Sulfur and Nitrogen Gases in the Vapor Streams from Ore Cyanidation Wastes at a Sharply Continental Climate, Western Siberia, Russia. Water Air Soil Pollut, 230, 307. https://doi.org/10.1007/s11270-019-4363-y
69. Yurkevich N.V., Karin Yu.G., Kuleshova T.A. (2017). Composition of the dump of the Beloklyuchevskoe gold deposit according to the data of electromagnetic scanning and geochemical sampling. Proc. Int. Sci. Symp.: Problems of Geology and Subsurface Development, 1, pp. 853–855. (In Russ.)
70. Zerkalov V.I. (1962). Mineralogy and geology of pyrite copper-zinc deposits of North-East Salair Ridge. Abstract Sci. Diss. Tomsk: TPI, 20 p. (In Russ.)
71. Zhuravkova T.V., Palyanova G.A., Zhuravkova T.V., Sazonov A.M., Silyanov S.A. (2019). Composition of Pyrrhotite as an Indicator of Gold Ore Formation Conditions at the Sovetskoe Deposit (Yenisei Ridge, Russia). Russian Geology and Geophysics, 60(7), pp. 735–751. https://doi.org/10.15372/RGG2019049
72. Xia С. (2008). Associated Sulfide Minerals in Thiosulfate Leaching of Gold: Problems and Solutions. PhD Thesis. Ontario, 339 р.
Review
For citations:
Khusainova A.Sh., Kalinin Yu.A., Gaskova O.L., Bortnikova S.B. Typomorphic characteristic of gold from tailings of pyrite-polymetallic deposits of Siberian. Georesursy = Georesources. 2021;23(3):149-163. (In Russ.) https://doi.org/10.18599/grs.2021.3.18