Preview

Georesources

Advanced search

Modern approaches to pore space scale digital modeling of core structure and multiphase flow

https://doi.org/10.18599/grs.2021.2.20

Abstract

In current review, we consider the Russian and, mainly, international experience of the “digital core» technology, namely – the possibility of creating a numerical models of internal structure of the cores and multiphase flow at pore space scale. Moreover, our paper try to gives an answer on a key question for the industry: if digital core technology really allows effective to solve the problems of the oil and gas field, then why does it still not do this despite the abundance of scientific work in this area? In particular, the analysis presented in the review allows us to clarify the generally skeptical attitude to technology, as well as errors in R&D work that led to such an opinion within the oil and gas companies. In conclusion, we give a brief assessment of the development of technology in the near future.

About the Authors

K. M. Gerke
Sсhmidt Institute of Physics of the Earth of the RAS
Russian Federation

Kirill M. Gerke – PhD (Physics and Mathematics), Leading Researcher

10, build.1, B. Gruzinskaya str., Moscow, 123242



D. V. Korost
Lomonosov Moscow State University
Russian Federation

Dmitry V. Korost – PhD (Geology and Mineralogy), Researcher

1, Leninskie gory, Moscow, 119234



M. V. Karsanina
Sсhmidt Institute of Physics of the Earth of the RAS
Russian Federation

Marina V. Karsanina – PhD (Physics and Mathematics), Senior Researcher

10, build.1, B. Gruzinskaya str., Moscow, 123242



S. R. Korost
Lomonosov Moscow State University
Russian Federation

Svetlana R. Korost – Engineer

1, Leninskie gory, Moscow, 119234



R. V. Vasiliev
Sсhmidt Institute of Physics of the Earth of the RAS
Russian Federation

Roman V. Vasiliev – Lead Programmer

10, build.1, B. Gruzinskaya str., Moscow, 123242



E. V. Lavrukhin
Lomonosov Moscow State University
Russian Federation

Efim V. Lavrukhin – PhD student

1, Leninskie gory, Moscow, 119234



D. R. Gafurova
Lomonosov Moscow State University
Russian Federation

Dina R. Gafurova – PhD (Geology and Mineralogy), Engineer

1, Leninskie gory, Moscow, 119234



References

1. Adler P.M., Jacquin C.G., Thovert J.F. (1992). The formation factor of reconstructed porous-media. Water resources research, 28, pp. 1571–1576. https://doi.org/10.1029/92WR00059

2. Al-Gharbi Mohammed S., Blunt Martin J. (2005). Dynamic network modeling of two-phase drainage in porous media. Phys. Rev. E, 71, 016308. https://doi.org/10.1103/PhysRevE.71.016308

3. Ambrose R.J., Hartman R.C., Diaz-Campos M., Akkutlu I.Y., Sondergeld C.H. (2012). Shale gas-in-place calculations. Part I. New pore-scale considerations. SPE Journal, 17(1), pp. 219–229. https://doi.org/10.2118/131772-PA

4. Balashov V.A., A.A. Zlotnik, E.B. Savenkov (2017). Numerical algorithm for simulation of three-dimensional two-phase flows with surface effects within domains with voxel geometry. Keldysh Institute Preprints, 091, 28 p. (In Russ.)

5. Baveye P.C., Laba M., Otten W., et al. (2010). Observer-dependent variability of the thresholding step in the quantitative analysis of soil images and X-ray microtomography data. Geoderma, 157(1-2), pp. 51–63. https://doi.org/10.1016/j.geoderma.2010.03.015

6. Bilger C., Aboukhedr M., Vogiatzaki K., Cant R.S. (2017). Evaluation of two-phase flow solvers using Level Set and Volume of Fluid methods. Journal of Computational Physics, 345, pp. 665–686. https://doi.org/10.1016/j.jcp.2017.05.044

7. Biswal B., Manwart C., Hilfer R., Bakke S., Oren P.E. (1999). Quantitative analysis of experimental and synthetic microstructures for sedimentary rock. Physica A, 273(3-4), pp. 452–475. https://doi.org/10.1016/S0378-4371(99)00248-4

8. Čapek P., Hejtmánek V., Brabec I., Zikanová A., Kocirik M. (2009). Stochastic Reconstruction of Particulate Media Using Simulated Annealing: Improving Pore Connectivity. Transport in Porous Media, 76, pp. 179–198. https://doi.org/10.1007/s11242-008-9242-8

9. Čapek P., Hejtmánek V., Kolafa J., Brabec I. (2011). Transport properties of stochastically reconstructed porous media with improved pore connectivity. Transport in Porous Media, 88, pp. 87–106. https://doi.org/10.1007/s11242-011-9726-9

10. Chauhan S., Rühaak W., Anbergen H., Kabdenov A. at al. (2016b). Phase segmentation of X-ray computer tomography rock images using machine learning techniques: an accuracy and performance study. Solid Earth, 7(4), pp. 1125–1139. https://doi.org/10.5194/se-7-1125-2016

11. Chauhan S., Rühaak W., Khan F., Enzmann F., at al. (2016a). Processing of rock core microtomography images: Using seven different machine learning algorithms. Computers & Geosciences, 86, pp. 120–128. https://doi.org/10.1016/j.cageo.2015.10.013

12. Cnudde V., Boone M.N. (2013). High-resolution X-ray computed tomography in geosciences: A review of the current technology and applications. Earth-Science Reviews, 123, pp. 1–17. https://doi.org/10.1016/j.earscirev.2013.04.003

13. Cnudde V., Masschaele B., Dierick M., Vlassenbroeck J., Van Hoorebeke L. Hoorebeke, Jacobs P. (2006). Recent progress in X-ray CT as a geosciences tool. Applied Geochemistry, 21(5), pp. 826–832. https://doi.org/10.1016/j.apgeochem.2006.02.010

14. Darman N.H., Pickup G.E., Sorbie K.S. (2002). A comparison of twophase dynamic upscaling methods based on fluid potentials. Computational Geosciences, 6(1), pp. 5–27. https://doi.org/10.1023/A:1016572911992

15. Demianov A., Dinariev O., Evseev N. (2011). Density functional modelling in multiphase compositional hydrodynamics. The Canadian Journal of Chemical Engineering, 89(2), pp. 206–226. https://doi.org/10.1002/cjce.20457

16. Deniz C.M., Xiang S., Hallyburton S., Welbeck A. at al. (2018). Segmentation of the Proximal Femur from MR Images using Deep Convolutional Neural Networks. Scientific Reports, 8(1), 16485. https://doi.org/10.1038/s41598-018-34817-6

17. Dewers T.A., Heath J., Ewy R., Duranti L. (2012). Three-dimensional pore networks and transport properties of a shale gas formation determined from focused ion beam serial imaging. International journal of oil gas and coal technology, 5, pp. 229–248. https://doi.org/10.1504/IJOGCT.2012.046322

18. Diamond S. (2000). Mercury porosimetry: an inappropriate method for the measurement of pore size distributions in cement-based materials. Cem. Concr. Res., 30, pp. 1517–1525. https://doi.org/10.1016/S0008-8846(00)00370-7

19. Dikinya O., Hinz C., Aylmore G. (2008). Decrease in hydraulic conductivity and particle release associated with self-filtration in saturated soil columns. Geoderma, 146, pp. 192–200. https://doi.org/10.1016/j.geoderma.2008.05.014

20. Dinariev O.Y., Evseev N.V. (2010). Modeling of surface phenomena in the presence of surface-active agents on the basis of the densityfunctional theory. Fluid dynamics, 45, pp. 85–95. https://doi.org/10.1134/S0015462810010102

21. Dong H., Blunt M.J. (2009). Pore-network extraction from microcomputerized-tomography images. Physical Review E, 80, 036307. https://doi.org/10.1103/PhysRevE.80.036307

22. Eichheimer P., Thielmann M., Popov A., Golabek G.J., Fujita W., Kottwitz M. O., and Kaus B.J.P. (2019): Pore-scale permeability prediction for Newtonian and non-Newtonian fluids, Solid Earth, 10, pp. 1717–1731, https://doi.org/10.5194/se-10-1717-2019

23. Fatt I. (1956a). The network model of porous media I. Capillary pressure characteristics. Petrol. Trans. AIME, 207, pp. 144–159.https://doi.org/10.2118/574-G

24. Fatt I. (1956b). The network model of porous media II. Dynamic properties of a single size tube network. Petrol. Trans. AIME, 207, pp. 160–163. https://doi.org/10.2118/574-G

25. Fatt I. (1956c). The network model of porous media III. Dynamic properties of networks with tube radius distribution. Petrol. Trans. AIME, 207, pp. 164–181. https://doi.org/10.2118/574-G

26. Gerke K., Karsanina M., Khomyak A., Darmaev B. and Korost D. (2018). Permeability Obtained from Pore-Scale Simulations as a Proxy to Core Orientation in Non-Aligned Rock Material. SPE Russian Petroleum Technology Conference, DOI: 10.2118/191661-18RPTC-MS

27. Gerke K., Karsanina M., Sizonenko T. (2017). Multi-Scale Image Fusion of X-Ray Microtomography and SEM Data to Model Flow and Transport Properties for Complex Rocks on Pore-Level. SPE Russian Petroleum Technology Conference. https://doi.org/10.2118/187874-MS

28. Gerke K.M., Karsanina M. V. (2021). How pore structure non stationarity compromises flow properties representativity (REV) for soil samples: Pore scale modelling and stationarity analysis. European Journal of Soil Science, 72(2), pp. 527–545. https://doi.org/10.1111/ejss.13055

29. Gerke K.M., Karsanina M.V. (2015). Improving stochastic reconstructions by weighting correlation functions in an objective function. Europhysics Lett., 111, 56002. https://doi.org/10.1209/0295-5075/111/56002

30. Gerke K.M., Karsanina M.V., Mallants D. (2015b). Universal stochastic multi-scale image fusion: An example application for shale rock. Scientific Reports, 5, 15880. https://doi.org/10.1038/srep15880

31. Gerke K.M., Karsanina M.V., Sizonenko T.O., Miao X., Gafurova D.R., Korost D.V. (2013). Multi-scale image fusion of X-ray microtomography and SEM data to model flow and transport properties for complex rocks on pore-level. SPE Russian Petroleum Technology Conference. Moscow. https://doi.org/10.2118/187874-MS

32. Gerke K.M., Karsanina M.V., Sizonenko T.O., Miao X., Gafurova D.R., Korost D.V. (2012). Multi-scale image fusion of X-ray microtomography and SEM data to model flow and transport properties for complex rocks on pore-level. SPE Russian Petroleum Technology Conference. Moscow. https://doi.org/10.2118/187874-MS

33. Gerke K.M., Karsanina M.V., Vasilyev R.V., Mallants D. (2014). Improving pattern reconstruction using directional correlation functions. Europhysics Lett., 106, 66002. https://doi.org/10.1209/0295-5075/106/66002

34. Gerke K.M., Korostilev E.V., Romanenko K.A., Karsanina M.V. (2021). Going submicron in the precise analysis of soil structure: A FIB-SEM imaging study at nanoscale. Geoderma, 383, 114739. https://doi.org/10.1016/j.geoderma.2020.114739

35. Gerke K.M., Sizonenko T.O., Karsanina M.V., Katsman R., Korost D.V. (2019). Influence of boundary conditions on the permeability tensor. Proc. Int. Geological and Geophysical Conf. and Exhib. “GeoEurasia 2019”. Tver: PoliPRESS, pp. 474–477. (In Russ.)

36. Gerke K.M., Vasilyev R.V., Khirevich S., Karsanina M.V., at al. (2018b). Finite-difference method Stokes solver (FDMSS) for 3D pore geometries: Software development, validation and case studies. Computers & Geosciences, 114, pp. 41–58. https://doi.org/10.1016/j.cageo.2018.01.005

37. Giffin S., Littke R., J Klaver. et al (2013). Application of BIB-SEM technology to characterize macropore morphology in coal. International journal of coal geology, 114, pp. 85–95. https://doi.org/10.1016/j.coal.2013.02.009

38. Gostick J., Aghighi M., Hinebaugh J., Tranter T., at al. (2016). OpenPNM: a pore network modeling package. Computing in Science & Engineering, 18(4), pp. 60–74. https://doi.org/10.1109/MCSE.2016.49

39. Gostick J.T. (2017). Versatile and efficient pore network extraction method using marker-based watershed segmentation. Physical Review E, 96(2), 023307. https://doi.org/10.1103/PhysRevE.96.023307

40. Hannaoui R., Horgue P., Larachi F., Haroun Y., Augier F., Quintard M., Prat M. (2015). Pore-network modeling of trickle bed reactors: Pressure drop analysis. Chemical Engineering Journal, 262, pp. 334–343. https://doi.org/10.1016/j.cej.2014.09.098

41. Hashemi M.A., Khaddour G., François B., Massart T.J., Salager S. (2014). A tomographic imagery segmentation methodology for three-phase geomaterials based on simultaneous region growing. Acta Geotechnica, 9(5), pp. 831–846. https://doi.org/10.1007/s11440-013-0289-5

42. Heiba A.A., Jerauld G.R., Davis H.T., Scriven L.E. (1986). Mechanismbased simulation of oil recovery processes. In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers. https://doi.org/10.2118/15593-MS

43. Holmes D.W., Williams J.R., Tilke P., Leonardi C.R. (2016). Characterizing flow in oil reservoir rock using SPH : Absolute permeability. Comput. Part. Mech., 3, pp. 141–154. https://doi.org/10.1007/s40571-015-0038-7

44. Hu D., Ronhovde P., Nussinov Z. (2012). Replica inference approach to unsupervised multiscale image segmentation. Physical Review E, 85(1), 016101. https://doi.org/10.1103/PhysRevE.85.016101

45. Iassonov P., Gebrenegus T., Tuller M. (2009). Segmentation of X-ray computed tomography images of porous materials: A crucial step for characterization and quantitative analysis of pore structures. Water Resources Research, 45(9). https://doi.org/10.1029/2009WR008087

46. Iglovikov V., Mushinskiy S., & Osin V. (2017). Satellite imagery feature detection using deep convolutional neural network: A Kaggle competition. arXiv preprint: 1706.06169.

47. Jang J., Narsilio G.A., Santamarina J.C. (2011). Hydraulic conductivity in spatially varying media–a pore-scale investigation. Geophysical journal international, 184(3), pp. 1167–1179. https://doi.org/10.1111/j.1365-246X.2010.04893.x

48. Jiang Z., Van Dijke M.I.J., Wu K., Couples G.D., Sorbie K.S., Ma J. (2012). Stochastic pore network generation from 3D rock images. Transport in porous media, 94(2), pp. 571–593. https://doi.org/10.1007/s11242-011-9792-z

49. Jiang Z., Wu K., Couples G., Van Dijke M., Sorbie K. and Ma J. (2007). Efficient extraction of networks from three dimensional porous media. Water Resources Research, 43(12), W12S03. https://doi.org/10.1029/2006WR005780

50. Jiao Y., Chawla N. (2014). Modeling and characterizing anisotropic inclusion orientation in heterogeneous material via directional cluster functions and stochastic microstructure reconstruction. Appl. Phys., 115, 093511. https://doi.org/10.1063/1.4867611

51. Jiao Y., Stillinger F.H., Torquato S. (2009). A superior descriptor of random textures and its predictive capacity. Proceedings of National Academy of Science, 106, 17634. https://doi.org/10.1073/pnas.0905919106

52. Jiao Y., Stillinger F.H., Torquato S.. (2008). Modeling heterogeneous materials via two-point correlation functions. II. Algorithmic details and applications. Physical Review E, 77, 031135. https://doi.org/10.1103/PhysRevE.77.031135

53. Jivkov A., Hollis C., Etiese F., McDonald S., Withers P., (2013). A novel architecture for pore network modelling with applications to permeability of porous media. Journal of Hydrology, 486, pp. 246–258. https://doi.org/10.1016/j.jhydrol.2013.01.045

54. Joos J., Carraro Th., Weber A., Ivers-Tiffee E. (2011). Reconstruction of porous electrodes by FIB/SEM for detailed microstructure modeling. Journal of Power Sources, 196, pp. 7302–7307. https://doi.org/10.1016/j.jpowsour.2010.10.006

55. Karimpouli S., Tahmasebi P. (2019). Segmentation of digital rock images using deep convolutional autoencoder networks. Computers & geosciences, 126, pp. 142–150. https://doi.org/10.1016/j.cageo.2019.02.003

56. Karsanina M.V., Gerke K.M. (2018). Hierarchical Optimization: Fast and Robust Multiscale Stochastic Reconstructions with Rescaled Correlation Functions. Physical Review Letters, 121(26). https://doi.org/10.1103/PhysRevLett.121.265501

57. Karsanina M.V., Gerke K.M., Skvortsova E.B., Ivanov A.L., Mallants D. (2018). Enhancing image resolution of soils by stochastic multiscale image fusion. Geoderma, 314, pp. 138–145. https://doi.org/10.1016/j.geoderma.2017.10.055

58. Karsanina M.V., Gerke K.M., Skvortsova E.B., Mallants D. (2015). Universal spatial correlation functions for describing and reconstructing soil microstructure. PloS ONE, 10(5), e0126515. https://doi.org/10.1371/journal.pone.0126515

59. Khan F., Enzmann F., Kersten M. (2016). Multi-phase classification by a least-squares support vector machine approach in tomography images of geological samples. Solid Earth, 7(2), pp. 481–492. https://doi.org/10.5194/se-7-481-2016

60. Khirevich S., Daneyko A., Höltzel A., Seidel-Morgenstern A., Tallarek U. (2010). Statistical analysis of packed beds, the origin of short-range disorder, and its impact on eddy dispersion. Journal of Chromatography A, 1217, pp. 4713–4722. https://doi.org/10.1016/j.chroma.2010.05.019

61. Khirevich S., Ginzburg I., Tallarek U. (2015). Coarse-and fine-grid numerical behavior of MRT/TRT lattice-Boltzmann schemes in regular and random sphere packings. Comput. Phys., 281, pp. 708–742. https://doi.org/10.1016/j.jcp.2014.10.038

62. Khirevich S., Höltzel A., Seidel-Morgenstern A., Tallarek U. (2012). Geometrical and topological measures for hydrodynamic dispersion in confined sphere packings at low column-to-particle diameter ratios. Journal of Chromatography A, 1262, pp. 77–91. https://doi.org/10.1016/j.chroma.2012.08.086

63. Khirevich S., Petzek T. (2018). Behavior of numerical error in pore-scale lattice Boltzmann simulations with simple bounce-back rule: Analysis and highly accurate extrapolation. Physics of Fluids, 30(9): 093604. https://doi.org/10.1063/1.5042229

64. Korost D.V., Gerke K.M. (2012). Computation of reservoir properties based on 3D structure of porous media. SPE Russian Oil and Gas Exploration and Production Technical Conference and Exhibition. https://doi.org/10.2118/162023-MS

65. Lavrukhin E.V., Gerke K.M., Sizonenko T.O., Karsanina M.V., Korost D.V., Tarasenko S.S. (2021). Segmentation and classification of porous media X-ray tomography images using convolutional neural networks. Advances in Water Resources (article accepted for consideration).

66. Lavrukhin E.V., Karsanina M.V., Izmailov A.F., Gerke K.M. (2019). Increasing the volume of numerical modeling at the scale of pores: the method of dividing into subcubes for the selection of porous network models. Delovoy zhurnal Neftegaz, 7, pp. 70–75. (In Russ.)

67. Lemmens L., Rogiers B., Jacques D., Huysmans M., Swennen R., Urai J.L. et al. (2019). Nested multiresolution hierarchical simulated annealing algorithm for porous media reconstruction. Physical Review E, 100(5), 053316. https://doi.org/10.1103/PhysRevE.100.053316

68. Li H., Chawla N., Jiao Y. (2014). Reconstruction of heterogeneous materials via stochastic optimization of limited-angle X-ray tomographic projections. Scripta Materialia, 86, pp. 48–51. https://doi.org/10.1016/j.scriptamat.2014.05.002

69. Li H., Chen P.E., Jiao Y. (2017). Accurate Reconstruction of Porous Materials via Stochastic Fusion of Limited Bimodal Microstructural Data. Transport in Porous Media, pp. 1–18. https://doi.org/10.1007/s11242-017-0889-x

70. Lindquist W. B., Lee S. M., Coker D. A., Jones K. W., Spanne P. (1996). Medial axis analysis of void structure in three dimensional tomographic images of porous media. Journal of Geophysical Research: Solid Earth, 101(B4), pp. 8297–8310. https://doi.org/10.1029/95JB03039

71. Loucks R.G., Reed R.M., Ruppel S.C. et al. (2012). Spectrum of pore types and networks in mudrocks and a descriptive classification for matrixrelated mudrock pores. AAPG Bulletin, 96, pp. 1071–1098. https://doi.org/10.1306/08171111061

72. Manwart C., Hilfer R. (1999). Reconstruction of random media using Monte-Carlo methods. Physical Review E, 59, pp. 5596–5599. https://doi.org/10.1103/PhysRevE.59.5596

73. Mason G., Morrow N.R. (1991). Capillary Behavior of a Perfectly Wetting Liquid in Irregular Triangular Tubes. Journal of Colloid and Interface Science, 141, pp. 262–274. https://doi.org/10.1016/0021-9797(91)90321-X

74. Mehmani A., Prodanovic M., Javadpour F. (2013). Multiscale, Multiphysics Network Modeling of Shale Matrix Gas Flows. Transport in porous media, 99, pp. 377–390. https://doi.org/10.1007/s11242-013-0191-5

75. Miao X., Gerke K.M., Sizonenko T.O. (2017). A new way to parameterize hydraulic conductances of pore elements: A step forward to create porenetworks without pore shape simplifications. Adv. Water Resour, 105, pp. 162–172. https://doi.org/10.1016/j.advwatres.2017.04.021

76. Nesterova I.S., Gerke K.M. (2021). Simulations of nanoscale gas flow with Knudsen diffusion and slip flow. Matem. Mod., 33(3), pp. 85–97. https://doi.org/10.20948/mm-2021-03-06

77. Oh W., Lindquist B. (1999). Image thresholding by indicator kriging. IEEE Trans. Pattern Anal. Mach. Intell., 21, pp. 590–602. https://doi.org/10.1109/34.777370

78. Oh W., Lindquist W.B. (1999). Image thresholding by indicator kriging. IEEE Transactions On Pattern Analysis And Machine Intelligence, 21, pp. 590–602. https://doi.org/10.1109/34.777370

79. Okabe H., Blunt M.J. (2007). Pore space reconstruction of vuggy carbonates using microtomography and multiple-point statistics. Water Resources Research, 43, pp. 0043–1397. https://doi.org/10.1029/2006WR005680

80. Øren P.E., Bakke S. (2002). Process based reconstruction of sandstones and prediction of transport properties. Transport in Porous Media, 46, pp. 311–314. https://doi.org/10.1023/A:1015031122338

81. Øren P.E., Bakke S., Arntzen O.J. (1998). Extending predictive capabilities to network models. SPE Journal, 3, pp. 324–336. https://doi.org/10.2118/52052-PA

82. Otsu N. (1979). A threshold selection method from gray-level histograms. IEEE transactions on systems, man, and cybernetics, 9(1), pp. 62–66. https://doi.org/10.1109/TSMC.1979.4310076

83. Pesaresi M., Benediktsson J.A. (2001). A new approach for the morphological segmentation of high-resolution satellite imagery. IEEE transactions on Geoscience and Remote Sensing, 39(2), pp. 309–320. https://doi.org/10.1109/36.905239

84. Piasecki R. (2011). Microstructure reconstruction using entropy descriptors. Proceedings of the Royal Society: A, 467, pp. 806–821. https://doi.org/10.1098/rspa.2010.0296

85. Piri M., Blunt M.J. (2005). Three-dimensional mixed-wet random porescale network modeling of two- and three-phase flow in porous media. I. Model description. Physical Review E, 71, 026301. https://doi.org/10.1103/PhysRevE.71.026301

86. Raeini A.Q., Blunt M.J., Bijeljic B. (2012). Modelling two-phase flow in porous media at the pore scale using the volume-of-fluid method. Journal of Computational Physics, 231, pp. 5653–5668. https://doi.org/10.1016/j.jcp.2012.04.011

87. Raoof A., Hassanizadeh S.M. (2010). A new formulation for pore network modeling of two phase flow. Water Resources Research, 48(1). https://doi.org/10.1029/2010WR010180

88. Renard P., Genty A., Stauffer F. (2001). Laboratory determination of the full permeability tensor. Geophys. Res. Solid Earth, 106, pp. 26443–26452. https://doi.org/10.1029/2001JB000243

89. Roberts A.P., Teubner M. (1995). Transport-Properties of Heterogeneous Materials Derived From Gaussian Random-Fields – Bounds And Simulation. Physical Review E, 51, pp. 4141–4154. https://doi.org/10.1103/PhysRevE.51.4141

90. Rokhforouz M. R., Akhlaghi Amiri H.A. (2017). Phase-field simulation of counter-current spontaneous imbibition in a fractured heterogeneous porous medium. Physics of Fluids, 29(6), 062104. https://doi.org/10.1063/1.4985290

91. Ryazanov A., van Dijke M.I.J. and Sorbie K.S. (2009). Two-phase porenetwork modelling: Existence of oil layers during water invasion. Transport in Porous Media, 80(1), pp. 79–99. https://doi.org/10.1007/s11242-009-9345-x

92. Saucier A., Richer J., Muller J. (2002). Assessing the scope of the multifractal approach to textural characterization with statistical reconstructions of images. Physica A, 311, pp. 231–259. https://doi.org/10.1016/S0378-4371(02)00814-2

93. Schlüter S., Vogel H., Vanderborght J. (2013). Combined Impact of Soil Heterogeneity and Vegetation Type on the Annual Water Balance at the Field Scale. Vadose Zone Journal, 12(4). https://doi.org/10.2136/vzj2013.03.0053

94. Schlüter S., Weller U., Vogel H.J. (2010). Segmentation of X-ray microtomography images of soil using gradient masks. Comput. Geosci., 36, pp. 1246–1251. https://doi.org/10.1016/j.cageo.2010.02.007

95. Sedaghat M.H., & Azizmohammadi S. (2019). Representative-elementaryvolume analysis of two-phase flow in layered rocks. SPE Reservoir Evaluation & Engineering, 22(03), 1–075. https://doi.org/10.2118/194014-PA

96. Sedaghat M.H., Gerke K., Azizmohammadi S., & Matthai S.K. (2016). Simulation-based determination of relative permeability in laminated rocks. Energy Procedia, 97, 433–439. https://doi.org/10.1016/j.egypro.2016.10.041

97. Sezgin M., & Sankur B. (2004). Survey over image thresholding techniques and quantitative performance evaluation. Journal of Electronic imaging, 13(1), 146–165. https://doi.org/10.1117/1.1631315

98. Shabro V., Torres-Verdín C., Javadpour F., & Sepehrnoori K. (2012). Finite-difference approximation for fluid-flow simulation and calculation of permeability in porous media. Transport in porous media, 94(3), 775–793. https://doi.org/10.1007/s11242-012-0024-y

99. Sheng Q., & Thompson K. (2013). Dynamic coupling of pore-scale and reservoir scale models for multiphase flow. Water Resources Research, 49(9), 5973–5988. https://doi.org/10.1002/wrcr.20430

100. Sheppard A.P., Sok R.M., Averdunk H. (2004). Techniques for image enhancement and segmentation of tomographic images of porous materials. Physica A, 339(1-2), pp. 145–151. https://doi.org/10.1016/j.physa.2004.03.057

101. Sheppard A.P., Sok R.M., Averdunk H. (2005, August). Improved pore network extraction methods. International Symposium of the Society of Core Analysts, 2125, pp. 1–11.

102. Shulakova V., Pervukhina M., Mueller T.M. et al. (2013). Computational elastic up-scaling of sandstone on the basis of X-ray micro-tomographic images. Geophysical Prospecting, 61, pp. 287–301. https://doi.org/10.1111/j.1365-2478.2012.01082.x

103. Silin D., & Patzek T. (2006). Pore space morphology analysis using maximal inscribed spheres. Physica A, 371(2), pp. 336–360. https://doi.org/10.1016/j.physa.2006.04.048

104. Tahmasebi P., Hezarkhani A., & Sahimi M. (2012). Multiple-point geostatistical modeling based on the cross-correlation functions. Computational Geosciences, 16(3), pp. 779–797. https://doi.org/10.1007/s10596-012-9287-1

105. Tahmasebi P., Sahimi M. (2013). Cross-correlation function for accurate reconstruction of heterogeneous media. Physical review letters, 110(7), 078002. https://doi.org/10.1103/PhysRevLett.110.078002

106. Thovert J.-F., Adler P. M. (2011). Grain reconstruction of porous media: Application to a Bentheim sandstone. Physical Review E, 83, 056116. https://doi.org/10.1103/PhysRevE.83.056116

107. Torquato S. (1991). Random heterogeneous media: Microstructure and improved bounds on effective properties. Appl. Mech. Rev., 44, pp. 37–76. https://doi.org/10.1115/1.3119494

108. Torquato S. (2002). Random Heterogeneous Materials: Microstructure and Macroscopic Properties. Springer Verlag. New York, 701 p. https://doi.org/10.1115/1.1483342

109. Valvatne P.H., Blunt M.J. (2004). Predictive pore scale modeling of two phase flow in mixed wet media. Water resources research, 40(7). https://doi.org/10.1029/2003WR002627

110. Varfolomeev I., Yakimchuk I., Safonov I. (2019). An Application of Deep Neural Networks for Segmentation of Microtomographic Images of Rock Samples. Computers, 8(4), pp. 72. https://doi.org/10.3390/computers8040072

111. Wen X.H., Gómez-Hernández J.J. (1996). Upscaling hydraulic conductivities in heterogeneous media: An overview. Journal of Hydrology, 183(1–2), ix-xxxii. https://doi.org/10.1016/S0022-1694(96)80030-8

112. Wildenschild D., Sheppard A.P. (2013). X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems. Advances in Water Resources, 51, pp. 217–246. https://doi.org/10.1016/j.advwatres.2012.07.018

113. Wu K.J., Nunan N., Crawford J.W., Young I.M., Ritz K. (2004). An efficient Markov chain model for the simulation of heterogeneous soil structure. Soil Sci.Soc.Am.J., 68(2), pp. 346–351. https://doi.org/10.2136/sssaj2004.3460

114. Yang Y.S., Liu K.Y., Mayo S., Tulloh A., Clennell M.B., Xiao T.Q. (2013). A data-constrained modelling approach to sandstone microstructure characterisation. Journal of Petroleum Science and Engineering, 105, pp. 76–83. https://doi.org/10.1016/j.petrol.2013.03.016

115. Yeong C.L.Y., Torquato S. (1998a). Reconstructing random media. Physical review E, 57(1), pp. 495–506. https://doi.org/10.1103/PhysRevE.57.495

116. Yeong C.L.Y., Torquato S. (1998b). Reconstructing random media. II. Three-dimensional media from two-dimensional cuts. Phys. Rev. E, 58, pp. 224–233. https://doi.org/10.1103/PhysRevE.58.224

117. Zakirov T., Galeev A. (2019). Absolute permeability calculations in micro-computed tomography models of sandstones by Navier-Stokes and lattice Boltzmann equations. International Journal of Heat and Mass Transfer, 129, pp. 415–426. https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.119

118. Zeinijahromi, A., Farajzadeh, R., Bruining, J. H., & Bedrikovetsky, P. (2016). Effect of fines migration on oil–water relative permeability during twophase flow in porous media. Fuel, 176, pp. 222–236. https://doi.org/10.1016/j.fuel.2016.02.066


Review

For citations:


Gerke K.M., Korost D.V., Karsanina M.V., Korost S.R., Vasiliev R.V., Lavrukhin E.V., Gafurova D.R. Modern approaches to pore space scale digital modeling of core structure and multiphase flow. Georesursy = Georesources. 2021;23(2):197-213. (In Russ.) https://doi.org/10.18599/grs.2021.2.20

Views: 325


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1608-5043 (Print)
ISSN 1608-5078 (Online)