Application of gamma-ray spectroscopy and IR-spectroscopy methods for the purposes of ore geology in the Timan-Pechora Oil and Gas Province (the case of Ukhta Region)
https://doi.org/10.18599/grs.2021.1.2
Abstract
Two express methods are presented in this paper. The first method is a high-resolution gamma-spectroscopic method based on a germanium detector, the second method is an IR-spectroscopic method. The applied complex of methods allows to determine the sources of uranium and thorium, identify the rhythms of uranium accumulation associated with regional events; identify areas with a high content of uranium due to the influence of local sources (faults, hydrothermal, etc.); determine the amount of authigenous uranium in the composition of total uranium; determine thermal maturity of organic matter in shales without their preliminary demineralization. To identify levels of increased uranium intensity in the high-carbon strata, a set of indicators has been proposed, which includes both applied indicators in practice of geological work and new indicators.
New indicators have been tested on the collection of shale reference samples. For them, values were established that characterize the processes of uranium accumulation and uranium removal. On the example of Ukhta Region according to the proposed indicators, the sections from the VendianRiphean to Domanic inclusive were interpreted.
The performed work showed the possibility of comparing the calculated gamma-spectroscopic data with the data of other methods. This opens up a broader perspective for the use of express non-destructive gamma-spectroscopic method for detecting levels with a high content of uranium in the shale rocks, to which ore-bearing concentrations of a number of metals are also confined.
Keywords
About the Authors
I. R. MakarovaRussian Federation
Irina R. Makarova – Cand. Sci. (Geology and Mineralogy), Leading Geologist
5, Shevchenko st., Nizhnii Domanik vill., pgt Yarega, Ukhta, 169347
N. N. Laptev
Russian Federation
Nikolay N. Laptev – Director
5, Shevchenko st., Nizhnii Domanik vill., pgt Yarega, Ukhta, 169347
S. A. Gorobets
Russian Federation
Semen A. Gorobets – Deputy Director
5, Shevchenko st., Nizhnii Domanik vill., pgt Yarega, Ukhta, 169347
F. F. Valiev
Russian Federation
Farhat F. Valiev – Dr. Sci. (Physics and Mathematics), Professor of the Department of Nuclear Physics Research Methods
1, Ulyanovskaya st., Saint Petersburg, 198504
A. M. Yafyasov
Russian Federation
Adil M. Yafyasov – Dr. Sci. (Physics and Mathematics), Professor of the Department of Solid State Electronics
1, Ulyanovskaya st., Saint Petersburg, 198504
V. O. Sergeev
Russian Federation
Viktor O. Sergeev – Cand. Sci. (Physics and Mathematics), Scientific Advisor
5, Shevchenko st., Nizhnii Domanik vill., pgt Yarega, Ukhta, 169347
A. I. Zippa
Russian Federation
Andrey I. Zippa – Engineer, Department of Nuclear Physics Research Methods
1, Ulyanovskaya st., Saint Petersburg, 198504
N. A. Sukhanov
Russian Federation
Nikita A. Sukhanov – Engineer
5, Shevchenko st., Nizhnii Domanik vill., pgt Yarega, Ukhta, 169347
D. K. Makarov
Russian Federation
Dmitry K. Makarov – Postgraduate student of the Department of Geology and Geoecology
48, riv. Moika emb., Saint Petersburg, 191186
A. S. Grishkanich
Russian Federation
Aleksandr S. Grishkanich – Cand. Sci. (Engineering), Deputy Director
36, build. 1, Babushkina st., Saint Petersburg, 192171
References
1. Berg N.V., Sivash N.S., Bogdanov B.P. (2012). Interrelation of sulphide mineralization and hydrocarbon accumulations - evidence from TimanPechora areas. Neftegazovaya Geologiya. Teoriya I Praktika, 7(3). http://www.ngtp.ru/rub/4/49_2012.pdf (In Russ.)
2. Chernov M.S., Krupskaya V.V., Kuznetsov R.A., Rychagov S.N., Sokolov V.N. (2019). Kaolinite of hydrothermal clays of the Pauzhetsko-KambalnoKoshelevsky geothermal Region (Southern Kamchatka). Proc. XXII All-Russ. Sci. Conf.: Volcanism and the related processes. Petropavlovsk-Kamchatsky: Institute of Volcanology and Seismology DVO RAN, pp. 240–243. (In Russ.)
3. Dyatlova E.M., Bobkova N.M., Sergievich O.A. (2019). IR-spectroscopic study of kaolin raw materials from Belorussian deposits. problemy nedropolzovaniya, 2, pp. 143–149. (In Russ.)
4. Geological dictionary (1973). Ed. K.N. Paffenholz et al. Moscow: Nedra. (In Russ.)
5. Gorobets S.A., Makarova I.R., Sivash N.S., Laptev N.N., Valiev F.F., Yafyasov A.M., Sokolov M.A., Zippa A.I., Sergeev V.O., Sukhanov N.A., Makarov D.K., Mikhailovsky V.Y. (2018). Method for determining metals in rocks and fluids of fracture zones. Patent RF. RU 2659109. (In Russ.)
6. Grigoriev N.A. (2003). Average content of chemical elements in rocks composing the upper part of the continental crust. Geokhimiya, 7, pp. 785–792. (In Russ.)
7. Ivanov V.P. (2016). Integrated assessment of Carboniferous-Permian coal-bearing deposits and development of industrial-and-energy classification of fossil coals. Abstract Dr. geol. and min. sci. diss. Tomsk, 43 p. (In Russ.)
8. Laptev N.N., Chalov D.Y., Chalov Y.V., Turtsevich K.G., Zubov A.A., Gorobets S.A., Goldobin A.Y., Milyaev V.L., Sivash N.S., Sergeev V.O., Valiev F.F., Zippa A.I., Sukhanov N.A., Makarov D.K., Makarova I.R. (2017). Method for determining the content of vanadium and rare-earth elements using gamma activity of sedimentary rocks. Patent RF. RU 2636401. (In Russ.)
9. Makarova I. R., Sukhanov A. A., Chelyshev S. S., Valiev F. F., Sergeev V. O., Zippa A.I. (2015). Physical and geophysical methods for prompt determination of hydrocarbon generation and migration zones in the domanicoid rocks. Proc. Int. Conf.: Hard-to-recover reserves and unconventional sources of hydrocarbons. Saint Petersburg: VNIGRI, 8 p. (In Russ.)
10. Makarova I.R. (2017). The Integrated Study of the Elements Geofluid System in the South Timan-Pechora Oil and Gas Region by Complex Physical Methods. 3-rd World Congress on Materials Science, Engineering, Oil, Gas and Petrochemistry. Spain, Barcelona, р. 94.
11. Makarova I.R., Grokhotov E.I. (2017). The determination of domanicits types as the elements of geofluid system. EAGE/SPE: The science of shale. Problems of exploration and development. Moscow, 4 p. (In Russ.)
12. Neruchev S.G. (1982). Uranus and Life in the history of Earth. Leningrad: Nedra, 208 p. (In Russ.)
13. Neruchev S.G., Rogozina E.K. (1986). Oil-and-gas formation in the sediments of domanic type. Leningrad: Nedra, 247 p. (In Russ.)
14. Parmuzin N.M., Yakobson K.E., Vovshina A.Yu., Voinova O.A. et al. (2016). State geological map of the Russian Federation. Scale 1:1,000,000 (third generation). Mezenskaya series - Sheet Р-39 (Syktyvkar). St.Petersburg: VSEGEI, 478 p. (In Russ.)
15. Perelman A.I., Kasimov N.S. (2000). Geochemistry of the landscape. Moscow: Astreya-2000. 763 p. (In Russ.)
16. Plyusnina I.I. (1967). Infrared spectra of silicates. Moscow: MSU, 189 p. (In Russ.)
17. Plyusnina I.I. (1977). Infrared spectra of minerals. Moscow: MSU, 175 p. (In Russ.)
18. Prishchepa O.M., Sukhanov A.A., Makarova I.R. (2014). Approaches to the estimation of domanic deposits of Timan-Pechora oil-and-gas province as unconventional sources of hydrocarbons. Neftegazovaya Geologiya. Teoriya I Praktika, 9(4). https://doi.org/10.17353/2070-5379/46_2014 (In Russ.)
19. Rumi M.Kh., Irmatova Sh.K., Zufarov M.A., Fayziev Sh.A., Mansurova E.P., Urazaeva E.M., Nurmatov P.R., Provotorov D.A. (2018). The study of compositions based on parkent kaolin clay. Novye Ogneupory (New Refractories), 11, pp. 29–33. (In Russ.)
20. Sergeeva A.V. (2018). Dikkit from Verkhne-Koshelevskaya thermal anomaly (Southern Kamchatka). Proc. XXI Regional Sci. Conf. PetropavlovskKamchatsky: Institute of Volcanology and Seismology DVO RAN, pp. 204–206. (In Russ.)
21. Sidorova E.Yu., Sitdikova L.M. (2013). The clay mineral associations of ancient weathering crusts - potential reservoir zones of the crystalline basement of the Tatar Arch. Georesursy=Georesources, 5, pp. 3–7. http://dx.doi.org/10.18599/grs.55.5.1 (In Russ.)
22. Sivash N.S., Berg N.V. (2010). Mineralogy of polymetallic ore occurrences of the Ukhta area. Proc. Russian Mineralogical Society: Modern Mineralogy: from theory to practice. Saint-Petersburg: RMO, pp. 19–21. (In Russ.)
23. Sivash N.S., Makarova I.R., Muravieva M.K. (2016). Model of distribution of hydrocarbon and ore components of geofluidic systems in the sedimentary cover of the Ukhta District. Proc. V Kudryavtsev’s Readings. AllRussian Conference on the deep genesis of oil and gas. Moscow, 4 p. (In Russ.)
24. Sukhanov A.A., Sergeev V.O., Valiev F.F., Makarova I.R., Yafyasov A.M. (2014). Application of physical methods to characterize the organic matter of dictionem shales in the Leningrad Region. Bulletin of Saint Petersburg University, Series 4, 1, pp. 32–36. (In Russ.)
25. Tarasevich B.N. (2012). IR-spectra of the main classes of organic compounds. Reference materials. Moscow: MSU, 55 p. (In Russ.)
26. Yevtushenko E.I., Sysa O.K., Lyashenko O.V., Novoselov A.G. (2012). Integrated analysis of structural changes in hydrothermal-stabilized kaolins. Vestnik BGTU im. V.G. Shukhova, 3, pp. 150–154. (In Russ.)
27. Yukhtanov P.P., Antoshkina A.I., Saldin V.A., Tsyganko V.S., Burtsev I.N. (2008). Geological heritage of the Komi Republic. Syktyvkar: Institute of Geology, UB RAS, 358 p. (In Russ.)
28. Yumanov F.L., Sivash N.S., Ivanov N.F. and others (2013). State geological map of the Russian Federation. Scale 1 : 200 000. Timanskaya Series. Sheet P-39-VI (Ukhta). Moscow: VSEGEI, 251 p. (In Russ.)
29. Yurichev A.N. (2015). Metasomatism (main aspects). Tomsk: TGU Publ., 116 p. (In Russ.)
30. Zakharov V.D., Kozulin A.H. (1979). Oil and gas of the Komi ASSR:. Syktyvkar: Komi book publ., 44 p. (In Russ.)
31. Zavyalov V.A. (1966). Geochemistry and trace elements of domanic formations of South Pritimanye. Moscow: Nauka, 156 p. (In Russ.)
Review
For citations:
Makarova I.R., Laptev N.N., Gorobets S.A., Valiev F.F., Yafyasov A.M., Sergeev V.O., Zippa A.I., Sukhanov N.A., Makarov D.K., Grishkanich A.S. Application of gamma-ray spectroscopy and IR-spectroscopy methods for the purposes of ore geology in the Timan-Pechora Oil and Gas Province (the case of Ukhta Region). Georesursy = Georesources. 2021;23(1):17-29. (In Russ.) https://doi.org/10.18599/grs.2021.1.2