Geology, physical-chemical and geodynamic conditions for the formation of Sokolovsk and Krasnokamensk granitoid massifs (South Ural)
https://doi.org/10.18599/grs.2021.1.9
Abstract
The article describes the geological structure of the Sokolovsk and Krasnokamensk massifs located in the central part of the Western subzone of the ChelyabinskAdamovka zone of the Southern Urals. They are of Lower Carboniferous age and break through the volcanogenicsedimentary deposits of the Krasnokamensk (D3kr) and Bulatovo (S1-D1bl) strata. It was found that these intrusions belong to the gabbro-syenite complex and are composed of gabbroids (phase I) and syenites, quartz monzonites, less often monzodiorites (phase II). The rocks of the second phase predominate (90–95%). Gabbros belong to the normal alkaline series of the sodium series and are close to tholeiitic mafic rocks, the formation of which is associated with riftogenic structures; syenites correspond to moderately alkaline series with K-Na type of alkalinity. It has been proved that in terms of their petrographic, petrochemical, geochemical, and metallogenic features (content of TiO2 , K2 O, Na2 O, Rb, Sr, distribution of REE, the presence of skarn-magnetic mineralization), the rocks of the massifs under consideration undoubtedly belong to the gabbro-granite formation. Crystallization of the Sokolovsk and Krasnokamensk intrusions occurred at a temperature of 880–930 °С in the mesoabyssal zone at a depth of about 7–8 km (P = 2.2–2.4 kbar). At the postmagmatic stage, the transformation parameters of the initially igneous rocks were, respectively, T = 730–770 °C, P = 4.0–4.2 kbar. The fact that these massifs belong to the gabbro-granite formation makes it possible to include them, together with Bolshakovsk, Klyuchevsky, Kurtmaksky and Kambulatovo, into the Chelyabinsk-Adamovka segment of the South Ural Early Carboniferous rift system.
Keywords
About the Authors
V. I. SnachevRussian Federation
Vladimir I. Snachev – Dr. Sci. (Geology and Mineralogy), Professor, Chief Researcher
16/2, Karl Marks st., Ufa, 450077
A. V. Snachev
Russian Federation
Aleksandr V. Snachev – Cand. Sci. (Geology and Mineralogy), Leading Researcher, Head of the Ore Field Laboratory
16/2, Karl Marks st., Ufa, 450077
B. A. Puzhakov
Russian Federation
Boris A. Puzhakov – Cand. Sci. (Geology and Mineralogy), Chief Geologist
61a, Omskaya st., Chelyabinsk, 454048
References
1. Angiboust S., Harlov D. (2017). Ilmenite breakdown and rutile-titanite stability in etagranitoids: Natural observations and experimental results. American Mineralogist, 102, pp. 1696–1708. https://doi.org/10.2138/am-2017-6064
2. Bodnar R.J., Vityk M.O. (1994). Interpretation of Microthermometric Data for H2 O-NaCl Fluid Inclusions. In: De Vivo B. and Frezzotti M.L., Eds., Fluid Inclusions in Minerals: Methods and Application, Pontignsno-Siena. pp. 117–130.
3. Borneman-Starynkevich I.D. (1964). Guide for the calculation of the formulas of minerals. Moscow: Nauka, 224 p. (In Russ.)
4. Fershtater G.B. (2013). Paleozoic intrusive magmatism of the Middle and Southern Urals. Yekaterinburg: RIO UB RAS, 368 p. (In Russ.)
5. Fershtater G.B., Malakhova L.V., Borodina N.S., Rapoport M.S., Smirnov V.N. (1984). Evgeosynclinal gabbro-granitoid series. Moscow: Nauka, 264 p. (In Russ.)
6. Gadd M.G., Peter J.M., Jackson S.E., Yang Z., Petts D. (2019). Platinum, Pd, Mo, Au and Re deportment in hyper-enriched black shale Ni-Zn-Mo-PGE mineralization, Peel River, Yukon, Canada. Ore Geology Reviews, 107, pp. 600–614. https://doi.org/10.1016/j.oregeorev.2019.02.030
7. Geodynamic reconstruction (1989). Toolkit for regional geological research. Leningrad: Nedra, 278 p. (In Russ.)
8. Henry D.J., Guidotti C.V., Thomson J.A. (2005). The Ti-saturation surface for low-to-medium pressure metapelitic biotites: Implications for geothermometry and Ti-substitution mechanisms. American Mineralogist, 90(2), pp. 316–328. https://doi.org/10.2138/am.2005.1498
9. Koval P.V., Prokofiev V.Yu. (1998). P–T conditions of crystallization of granitoids in the Mongolia–Okhotsk Zone: evidence from studies of melt and fluid inclusions in minerals. Petrology, 6(5), pp. 497–511.
10. Lecomte A., Cathelineau M., Michels R., Peiffert C., Brouand M. (2017). Uranium mineralization in the Alum Shale Formation (Sweden): Evolution of a U-rich marine black shale from sedimentation to metamorphism. Ore Geology Reviews, 88, pp. 71–98. https://doi.org/10.1016/j.oregeorev.2017.04.021
11. Maslov A.V., Kovalev S.G., Gareev E.Z. (2017). Riphean lowcarbonaceous shales of the South Urals in the context of formation of large igneous provinces. Geochemistry International, 55(7), pp. 608-620. https://doi.org/10.1134/S0016702917070059
12. Mutch E.J.F., Blundy J.D., Tattitch B.C., Cooper F.J., Brooker R.A. (2016). An experimental study of amphibole stability in low-pressure granitic magmas and a revised Al-in-hornblende geobarometer. Contributions to Mineralogy and Petrology, 171:85. https://doi.org/10.1007/s00410-016-1298-9
13. Naumov V.B. (1969). Thermometric study of melt inclusions in quartz phenocrysts of quartz porphyry. Geokhimiya, 4, pp. 494–498. (In Russ.)
14. Naumov V.B. (1979). Determination of concentration and pressure of volatiles in magmas from inclusions in minerals. Geochemistry International, 16, pp. 33–40.
15. Parnell J., Perez M., Armstrong J., Bullock L., Feldmann J., Boyce A.J. (2017). A black shale protolith for gold-tellurium mineralisation in the Dalradian Supergroup (Neoproterozoic) of Britain and Ireland. Applied Earth Science, 126(4), pp. 161–175. https://doi.org/10.1080/03717453.2017.1404682
16. Pearce J.A., Harris N.B.W., Tindle A.G. (1984). Trace element discrimination diagrams for the tectonic interpretation of granitic rock. Journal of Petrology, 25(4), pp. 956–983. https://doi.org/10.1093/petrology/25.4.956
17. Perchuk L.L., Ryabchikov I.D. (1976). Phase correspondence in mineral systems. Moscow: Nedra, 287 p. (In Russ.)
18. Petrov V.I., Shalaginov A.E., Punegov B.N., Gorlova L.I., Zabelkina L.G., Grigorova T.B., Nikolsky V.Yu., Shalaginova T.I., Petrova A S., Sereda V.V. (2003). State geological map of the Russian Federation. Scale 1:200 000 (2nd ed.). South Ural series, Sheet N-41-VII (Miass). Moscow: VSEGEI, 167 p. (In Russ.)
19. Pribavkin S.V. (2019). Amphibole and biotite of melanocratic rocks from the Ural granitic massifs: composition, relationship, petrogenetic consequences. Lithosphere (Russia), 19(6), pp. 902–918. https://doi.org/10.24930/1681-9004-2019-19-6-902-918 (In Russ.)
20. Puchkov V.N. (2000). Paleogeodynamics of the Southern and Middle Urals. Ufa: Dauria, 145 p. (In Russ.)
21. Puzhakov B.A., Shokh V.D., Schulkina N.E., Shchulkin E.P., Dolgova O.Ya., Orlov M.V., Popova T.A., Tarelkina E.A., Ivanov A.V. (2018). State geological map of the Russian Federation. Scale 1:200 000 (2nd ed.) South Ural series, Sheet N-41-XIII (Plast). Moscow: VSEGEI, 205 p. (In Russ.)
22. Ronkin Yu.L. (1989). Strontium isotopes – indicators of the evolution of magmatism of the Urals. Yezhegodnik-1988. Sverdlovsk: IHG UC AN SSSR, pp. 107–109. (In Russ.)
23. Rykus M.V., Snachev V.I., Kuznetsov N.S., Saveliev D.E., Bazhin E.A., Snachev A.V. (2009). Ore mineralization of dunite-harzburgite and black shale formations in a transitional area between the South and Middle Urals. Neftegazovoe Delo, 7(2), pp. 17–27. (In Russ.)
24. Salikhov D.N., Moseychuk V.M., Kholodnov V.V., Rakhimov I.R. (2014). Carboniferous volcanic-intrusive magmatism of the Magnitogorsk-Bogdanov graben in the light of new geological and geochemical data. Lithosphere (Russia), 5, pp. 33–56. (In Russ.)
25. Shumilova T.G., Shevchuk S.S., Isayenko S.I. (2016). Metal concentrations and carbonaceous matter in the black shale type rocks of the Urals. Doklady Earth Sciences, 469(1), pp. 695–698. https://doi.org/10.1134/S1028334X16070060
26. Snachev A.V., Puchkov, Snachev V.I., Romanovskaya M.A. (2019). The Geodynamic and Physicochemical Conditions of the Formation of the Stepninsky Monzogabbro-Granosyenite-Granite Complex (Southern Urals). Moscow University Geology Bulletin, 74(1), pp 81–92. https://doi.org/10.3103/S0145875219010113
27. Snachev V.I., Snachev A.V. (2014). Patterns of distribution of gold manifestation in carbon deposits Beloretsk metamorphic complex (the South Urals). Bulletin of the Voronezh State University, 2, pp. 79–87. (In Russ.)
28. Snachev V.I., Snachev A.V., Romanovskaya M.A. (2019). The History of the Early Carboniferous Gabbro-Granite Formation (Southern and Middle Urals). Moscow University Geology Bulletin, 74(6), pp. 540–548. https://doi.org/10.3103/S0145875219060103
29. Snachyov A.V., Puchkov V.N., Snachyov V.I., Savel’ev D.E., Bazhin E.A. (2009). Bol’shakovskii gabbro massif as a fragment of the Southern Urals zone of early carboniferous rift. Doklady Earth Sciences, 429(8), pp. 1267-1269. https://doi.org/10.1134/S1028334X09080066
30. Thermo- and barometry of metamorphic rocks (1977). Leningrad: Nauka, 207 p. (In Russ.)
31. Wakita H., Rey P., Schmitt R.A. (1971). Abundences of the 14 rare-earth elements and 12 other trace elements in Apollo 12 samples: fife igneous and one breccia rocks and four soils. Proceedings of the Lunar Science Conference. Oxford: Pergamon Press, 2, pp. 1319–1329.
32. Yudovich Ya.E., Ketris M.P. (2015). Geochemistry of black shale. MoscowBerlin: Direct Media, 272 p. https://doi.org/10.23681/428042 (In Russ.)
Review
For citations:
Snachev V.I., Snachev A.V., Puzhakov B.A. Geology, physical-chemical and geodynamic conditions for the formation of Sokolovsk and Krasnokamensk granitoid massifs (South Ural). Georesursy = Georesources. 2021;23(1):85-93. (In Russ.) https://doi.org/10.18599/grs.2021.1.9