Preview

Georesources

Advanced search

Analytical and semi-analytical methods for modeling liquid inflow to a horizontal well (review)

https://doi.org/10.18599/grs.2023.4.23

Abstract

The efficiency of using horizontal drilling technology largely depends on a number of factors, including the geological structure of the productive formation, fracturing, anisotropy, heterogeneity, porosity, and permeability. This necessitates the design of the process of oil inflow to the horizontal section of the well. The article presents analytical and numerical methods used in modeling liquid inflow to horizontal and multilateral wells. The main attention is paid to taking into account the anisotropy of reservoir permeability, the trajectory of the horizontal wellbore and hydraulic pressure losses due to friction.

About the Authors

A. V. Nasybullin
Almetyevsk State Oil Institute
Russian Federation

Arslan V. Nasybullin – Dr. Sci. (Engineering), Head of the Department of Development and Operation of Oil and Gas Fields

2 Lenin st., Almetyevsk, 423450



P. E. Morozov
Institute of Mechanics and Engineering – Subdivision of FIC KazanSC of RAS
Russian Federation

Petr E. Morozov – Dr. Sci. (Physics and Mathematics), Senior Researcher

2/31 Lobachevsky st., Kazan, 420111



M. N. Shamsiev
Institute of Mechanics and Engineering – Subdivision of FIC KazanSC of RAS
Russian Federation

Marat N. Shamsiev – Dr. Sci. (Engineering), Leading Researcher

2/31 Lobachevsky st., Kazan, 420111



L. R. Shaikhrazieva
Almetyevsk State Oil Institute
Russian Federation

Laisan R. Shaikhrazieva– Cand. Sci. (Engineering), Assistant of Department of Development and Operation of Oil and Gas Fields

2 Lenin st., Almetyevsk, 423450



V. A. Sayakhov
Almetyevsk State Oil Institute
Russian Federation

Vadim A. Sayakhov– Cand. Sci. (Engineering), Associate Professor, Department of Development and Operation of Oil and Gas Fields

2 Lenin st., Almetyevsk, 423450



O. V. Denisov
Tatneft PJSC
Russian Federation

Oleg V. Denisov – Cand. Sci. (Engineering), Lead business analyst

75 Lenin st., Almetyevsk, 423450



L. K. Shaidullin
Almetyevsk State Oil Institute
Russian Federation

Lenar K. Shaidullin – Graduate Student, Department of Development and Operation of Oil and Gas Fields

2 Lenin st., Almetyevsk, 423450



References

1. Batler R.M. (2010). Horizontal wells for recovery of oil, gas and bitumen. Moscow – Izhevsk: Institut komp’yuternyh issledovanii, NIC “Regulyarnaya i haoticheskaya dinamika”, 536 p. (In Russ.)

2. Berdin T.G. (2001). Designing the development of oil and gas fields with horizontal well systems. Moscow: OOO “Nedra-Biznescentr”, 199 p. (In Russ.)

3. Borisov Y.P., Pilatovskiy V.P., Tabakov V.P. (1964). Development of oil deposits with horizontal and multilateral wells. Moscow: Nedra, 350 p. (In Russ.)

4. Brekhuncov A.M., Telkov A.P., Fedorcov V.K. (2004). Development of the theory of liquid and gas filtration to horizontal wellbores. Tyumen: OAO “SibNAC”, 290 p. (In Russ.)

5. Chaudhry A. (2004). Oil Well Testing Handbook. Boston; Oxford: Gulf Prof. Publ., 689 p.

6. Domanyuk F.N. (2011). Steady-state liquid flow towards an undulating well. Neftepromyslovoe delo, 7, pp. 21–26. (In Russ.)

7. Grachev S.I., Rogozina T.V., Kolev ZH.M., Mamchistova E.I. (2021). Inflow to an oil well with a complex trajectory in the reservoir. Nauka. Innovacii. Tekhnologii, 2, pp. 39–58. (In Russ.) https://doi.org/10.37493/2308-4758.2021.2.3

8. Griguletsky V.G. (1992). Stationary oil inflow to a single horizontal well in an anisotropic reservoir. Neftyanoe Khozyaystvo = Oil Industry, 10, pp. 10–12. (In Russ.)

9. Hairullin M.H., Morozov P.E., Shamsiev M.N. (2012). Hydrodynamic studies of multilateral horizontal wells. Georesursy, geoenergetika, geopolitika, 1(5), pp. 1–8. (In Russ.)

10. Hairullin M.H., Shamsiev M.N., Badertdinova E.R., Abdullin A.I. (2012). Thermohydrodynamic investigations of horizontal oil wells. High Temperatures, 50(6), pp. 774–778. https://doi.org/10.1134/S0018151X12050070

11. Hill A.D., Zhu D., Economides M.J. (2008). Multilateral Wells. SPE, 200 p. https://doi.org/10.2118/9781555631383

12. Houben G.J., Collins S., Bakker M., Daffner T., Triller F., Kacimov A. (2022) Review: Horizontal, directionally drilled and radial collector wells. Hydrogeology Journal, 30, pp. 329‒357. https://doi.org/10.1007/s10040-021-02425-w

13. Iktisanov V.A. (2020). Description of steady inflow of fluid to wells with different con-figurations and various partial drilling-in. Journal of Mining Institute, 243, pp. 305–312. https://doi.org/10.31897/pmi.2020.3.305

14. Joshi S.D. (1988). Augmentation of well productivity with slant and horizontal wells. Journal of Petroleum Technology, 40(6), pp. 729–739. https://doi.org/10.2118/15375-PA

15. Joshi S.D. (1991). Horizontal Well Technology. PennWell Publ. Comp., 535 p.

16. Khisamov R.S., Fatkullin R.K., Khannanov R.G. (2010). New technology of horizontal well completion and production. Neftyanoe hozyaystvo = Oil Industry, 12, pp. 110–112. (In Russ.)

17. Michelevicius D., Minijos N., Zolotukhin A.B. (2002). Evaluating Productivity of a Horizontal Well. SPE International Thermal Operations and Heavy Oil Symposium and International Horizontal Well Technology Conference, Calgary, Alberta, Canada. SPE-79000-MS, pp. 1–10. https://doi.org/10.2118/79000-MS

18. Morozov P.E. (2008). Evaluation of the productivity of a horizontal well in an anisotropic reservoir. Problems of heat and mass transfer and hydrodynamics in power engineering: Proc. VI School-seminar, Kazan, September 16–18, 2008. Kazan: Kazan University Publ., pp. 340–343.(In Russ.)

19. Morozov P.E. (2018). Steady fluid flow to a radial system of horizontal wells. Journal of Applied Mechanics and Technical Physics, 59(2), pp. 273–280. https://doi.org/10.1134/S0021894418020104

20. Morozov P.E. (2018). Simulation of non-stationary fluid inflow to a multi-section horizontal well. Georesursy = Georesources, 20(1), pp. 44–50. https://doi.org/10.18599/grs.2018.1.44-50

21. Morozov P.E., Hairullin M.H., Shamsiev M.N. (2005). Numerical solution of direct and inverse problems during fluid filtration to a horizontal well. Vychislitel’nye metody i programmirovanie = Numerical Methods and Programming, 6(2), pp. 139–145. (In Russ.)

22. Mukherjee H., Economides M.J. (1991). A parametric comparison of horizontal and vertical well performance. SPE Formation Evaluation, 6(2), pp. 209–216. https://doi.org/10.2118/18303-PA

23. Nasybullin A.V., Voykin V.F. (2015). Definition of Production Rate in a Horizontal Well at Steady Mode in the Object of Flooding. Georesursy = Georesources, 4(63), pp. 35–38. (In Russ.) http://dx.doi.org/10.18599/grs.63.4.22

24. Nasybullin A.V., Lifant’ev A.V., Vasil’ev V.V., Astakhova A.N. (2014). Controlling over the model of stable inflow towards a horizontal well and a fracture of endless conductivity. Avtomatizaciya, telemekhanizaciya i svyaz’ v neftyanoj promyshlennosti, 6. pp. 27–32. (In Russ.)

25. Nafikov R.I., Salamatin A.A. (2023). Representation of the pressure field and flows in the vicinity of a horizontal well based on instantaneous point sources. Georesursy = Georesources, 25(1), pp. 140–144. (In Russ.) https://doi.org/10.18599/grs.2023.1.14

26. Ozkan E., Sarica C., Haci M. (1999). Influence of pressure drop along the wellbore on horizontal-well productivity. SPE Journal, 4(3), pp. 288–301. https://doi.org/10.2118/57687-PA

27. Ouyang L.-B., Aziz K. (2001). A general single-phase wellbore/ reservoir coupling model for multilateral wells. SPE Reservoir Evaluation & Engineering, 4(4), pp. 327–335. https://doi.org/10.2118/72467-PA

28. Renard G., Dupuy J.M. (1991). Formation damage effects on horizontalwell flow efficiency. Journal of Petroleum Technology, 43(7), pp. 786–869. https://doi.org/10.2118/19414-PA

29. Suprunowicz R., Butler R.M., Ford C.O.K., Kry S.F. (1998). An experimental investigation of convergent flow to horizontal wells. Journal of Canadian Petroleum Technology, 37(10), pp. 51‒57. https://doi.org/10.2118/98-10-04

30. Tahautdinov Sh.F., Hisamov R.S., Ibatullin R.R., Abdrahmanov G.S., Vahitov I.D., Nizamov I.G. (2013). Controllable operation of horizontal wellbore intervals. Neftyanoe hozyaystvo = Oil industry, 7, pp. 26–27.(In Russ.) https://doi.org/10.18599/grs.2018.1.44-50

31. Telkov A.P., Grachev S.I. (2009). Reservoir hydromechanics as applied to problems of oil and gas field development. Part II. Tyumen: TSOGU, 352 p. (In Russ.)

32. Wolfsteiner C., Durlofsky L.J., Aziz K. (2000). Approximate model for productivity of nonconventional wells in heterogeneous reservoirs. SPE Journal, 5(2), pp. 218–226. https://doi.org/10.2118/62812-PA

33. Yartiev A.F., Fazlyev R.T., Mironova L.M. (2008). Application of horizontal wells in oil fields of Tatarstan. Moscow: VNIIOENG, 156 p. (In Russ.)

34. Zakirov E.S., Zakirov S.N., Indrupskii I.M., Anikeev D.P. (2018). Well Connection Conductivity Calculation – Stanford University Semi-Analytical Method. Aktualnye problemy nefti i gaza, 2(21), pp. 1–10. (In Russ.)

35. Zakirov S.N., Indrupskii I.M., Zakirov E.S., Zakirov I.S. et al (2009). New principles and technologies for the development of oil and gas fields. Part 2. Moscow – Izhevsk: Institut komp’yuternyh issledovanii, 484 p. (In Russ.)


Review

For citations:


Nasybullin A.V., Morozov P.E., Shamsiev M.N., Shaikhrazieva L.R., Sayakhov V.A., Denisov O.V., Shaidullin L.K. Analytical and semi-analytical methods for modeling liquid inflow to a horizontal well (review). Georesursy = Georesources. 2023;25(4):252-259. (In Russ.) https://doi.org/10.18599/grs.2023.4.23

Views: 141


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1608-5043 (Print)
ISSN 1608-5078 (Online)