Preview

Georesources

Advanced search

Organic Geochemistry of Bituminous Shales in the Kashpirskoe field (Samara region)

https://doi.org/10.18599/grs.2024.4.17

Abstract

The studied Upper Jurassic and Lower Cretaceous bituminous shales of the Kashpirskoe field contain organic matter (OM) terrestrial in carbon isotopic composition (δ13C > –24‰) and marine in pyrolytic characteristics (HI > 500 mg HC/g TOC). Shales contain autochthonous bitumens that are marine (Pr/Ph ≤ 0.5, Ph/nC18> 1, distribution of biosteranes with C29/C27 ≤ 1.5, presence of long-chain alkyl naphthalenes – indicator of marine algae Gloeocapsomorpha prisca, “V-shaped” distribution of methyldibenzothiophenes). At the same time, a number of parameters correspond to the terrestrial OM (in n-alkanes nC27/nC17 >>1, Pwax (0.6–0.7) > Paq(0.4–0.5), the indicator of coniferous plants reten is marked in the aromatic fraction), which indicates the proximity of land. Isorenieratene derivatives, biomarkers of specific Chlorobiaceae bacteria, were found in the samples; therefore, despite the probable proximity of land, anoxia occurred in the photic layer of the sedimentation basin. The presence of diasterenes indicates diagenetic transformations also under conditions of anoxic sediment. According to the results of pyrolysis, the OM is catagenetically weakly mature (very low Tmax), which is confirmed by the composition of the bitumen (CPI ≥ 1.7 in n-alkanes, high Pr/nC17 and Ph/nC18 ratios, absence of isoand diasteranes, presence of biosteranes and sterenes, low concentrations or absence of typical terpanes, presence of biohopanes and hopenes, low the ratio of homohopanes C3122S/(22S+22R) << 0.5, low ratios of MDR (0.5–1.0) and MPI-1 (0.4–0.8), mostly absent (not yet formed) monoand triaromatic steroids).

The Lower Cretaceous shales from the boundary interval between the Volgian and Ryazan stages, not characterized by fauna, are more enriched in terrestrial components compared to the Upper Jurassic oil shales from the Dorsoplanites panderi ammonite zone. The peculiarities in the characteristics of the studied shales are associated with the genetic specificity of the OM, with anoxia in water and sediment with the accumulation of OM, and with its weak catagenetic maturity at fairly high concentrations.

About the Authors

I. D. Timoshina
Trofimuk Institute of Petroleum Geology and Geophysics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Irina D. Timoshina – Cand. Sci. (Geology and Mineralogy), Senior Researcher.

3 Ac. Koptyug av., Novosibirsk, 630090



E. N. Ivanova
Trofimuk Institute of Petroleum Geology and Geophysics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Elena N. Ivanova – Leading Engineer.

3 Ac. Koptyug av., Novosibirsk, 630090



References

1. Affouri H., Sahraoui O. (2017). The sedimentary organic matter from a Lake Ichkeul core (far northern Tunisia): Rock-Eval and biomarker approach. Journal of African Earth Sciences, 129, pp. 248–259. https://doi.org/10.1016/j.jafrearsci.2017.01.017

2. Borisova L.S., Fursenko E.A., Kostyreva E.A., Timoshina I.D. (2019). A complex of chemical and physical methods for obtaining and researching components of organic matter of rocks and naphthides. Novosibirsk: IPC NGU, 84 p. (In Russ.)

3. Borisova L.S., Timoshina I.D. (2021). Geochemistry of Asphaltenes in Organic Matter of Low Thermal Maturity. Geochemistry International, 59 (3), с. 290–300. https://doi.org/10.1134/S0016702921030034

4. Bushnev D.A. (2022). Geochemistry of the organic matter of anoxic basins. Bulletin of Geosciences, 2(326), pp. 3–11. (In Russ.) https://doi.org/10.19110/geov.2022.2.1

5. Bushnev D.A., Burdel’naya N.S. (2008). Organic matter and deposition conditions of the Kashpir oil shales. Geochem. Int., 46, pp. 971–984. https://doi.org/10.1134/S0016702908100029

6. Bushnev D.A., Burdel’naya N.S. (2003). Organosulfur compounds of the Upper Jurassic shale-bearing strata of the Sysolsky district. Petroleum Chemistry, 43(4), pp. 256–265. https://doi.org/10.1134/S0016702908100029

7. Bushnev D.A., Burdel’naya N.S., Ryabinkin S.V., Kuzmin D.V., Mokeev M.V. (2017). Vorkuta district coal: the composition of biomarker hydrocarbons, the possibility of obtaining a de-salted concentrate. Vestnik IG Komi NC URO RAN = Bulletin of the IG Komi National Research Center of the Ural Branch of the Russian Academy of Sciences, (9), pp.3–11. (In Russ.) https://doi.org/10.19110/2221-1381-2017-9-3-11

8. Bushnev D.A., Burdelnaya N.S., Snigirevsky S.M., Beznosov P.A., Kotik O.S., Pronina N.V., Grinko A.A. (2024). Geologic and Geochemical Features of the Upper Devonian Coals of the North Timan (the Sula River Coal Field). Russian Geology and Geophysics, 65 (1), pp. 137–153. https://doi.org/10.2113/RGG20234283

9. Bushnev D.A., Smoleva I.V. (2011). Carbon isotopes of organic matter from the upper Jurassic oil shales from the Volgian-Pechora shale province and its accumulation mechanisms. Dokl. Earth Sc., 441, pp. 1543–1545. https://doi.org/10.1134/S1028334X11110122

10. Chakhmakhchev V.A., Kartsev A.A., Prasolov E.M. (2005). Geochemical indicators of the biogenic nature of naphthides. Geologiya Nefti I Gaza = Russian Oil And Gas Geology, (1), pp. 47–52. (In Russ.)

11. Coolen M.J.L., Orsi W.D. (2015). The transcriptional response of microbial communities in thawing Alaskan permafrost soils. Frontiers in Microbiology, 6, pp. 1–14. https://doi.org/10.3389/fmicb.2015.00197

12. Douglas A. G., Sinninghe Damste J. S., Fowler M. G., Eglinton T. I., and De Leeuw J. W. (1991). Unique distributions of hydrocarbons and sulphur compounds released by flash pyrolysis from the fossilized alga Gloecapsomorpha prisca, a major constituent in one of four Ordovician kerogens. Geochimica et Cosmochimica Acta, 55, pp. 275–291. https://doi.org/10.1016/0016-7037(91)90417-4

13. Dzyuba O.S., Urman O.S., Shurygin B.N. (2015). Belemnites and bivalves from the jurassic-cretaceous boundary interval of the Kashpir section, Middle Volga basin, Russia: implications for biostratigraphy and panboreal correlation. The International Scientific Conference on the Jurassic/Cretaceous boundary. Togliatti: Kassandra, pp. 36–41.

14. Ficken K.J., Li B., Swain D.L., Eglinton G. (2000). An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Organic geochemistry, 31, pp. 745–749. https://doi.org/10.1016/s0146-6380(00)00081-4

15. Geology of the places of origin of coal and oil shales of the USSR (1968). V.11. Goryuchie slancy SSSR = Oil shales of the USSR. Moscow: State University. NTI literature on geology and subsoil protection, 608 p. (In Russ.)

16. Huang W.-Y., Meinshein W.G. (1979). Sterols as ecological indicators. Geochim. et Cosmochim. Acta, 43, pp. 739–745. https://doi.org/10.1016/0016-7037(79)90257-6

17. Kashirtsev V.A., Gayduk V.V., Chalaya O.N., Zuyeva I.N. (2012). Geochemistry of biomarkers and catagenesis of organic matter of the Cretaceous and Cenozoic deposits of the Indigiro-Zyryansk trough. Geologiya i geofizika = Russian Geology and Geophysics, 53 (8), pp. 1027–1039. (In Russ.)

18. Kashircev V.A., Dzyuba O.S., Nikitenko B.L., Kostyreva E.A., Ivanova I.K., Shevchenko N.P. (2021). Geochemistry of high molecular weight dimethylalkanes. Geologiya i geofizika = Russian Geology and Geophysics, 62 (8), pp. 1056–1068. (In Russ.) DOI: 10.15372/GiG2021108

19. Kashircev V.A., Dolzhenko K.V., Fomin A.N., Kontorovich A.E., Shevchenko N.P. (2017). Hydrocarbon composition of bitumen from deeply buried terrestrial organic matter (zone of apocatagenesis). Russian Geology and Geophysics, 58(6), pp. 702–710. https://doi.org/10.1016/j.rgg.2016.03.018

20. Kashirtsev V.A., Kontorovich A.E., Moskvin V.I. (2008). Biomarker hydrocarbons in the organic matter of Paleogene sediments in southern West Siberia. Petrochemistry, 48, pp. 269–276. https://doi.org/10.1134/S096554410804004X

21. Kashirtsev V.A., Moskvin V.I., Fomin A.N., Chalaya O.N. (2010). Terpanic and steranic hydrocarbons in coals of various genetic types of Siberia. Geologiya i geofizika = Russian Geology and Geophysics, 51(4), pp. 516–524. (In Russ.)

22. Kashircev V.A., Nikitenko B.L., Peshchevickaya E.B., Fursenko E.A. (2018a). Biogeochemistry and microfossils of the Upper Jurassic and Lower Cretaceous, Anabar Bay, Laptev Sea. Geologiya i geofizika = Russian Geology and Geophysics, 59 (4), pp. 386–404. https://doi.org/10.1016/j.rgg.2017.09.004

23. Kashirtsev V.A., Nikitenko B.L., Peshchevitskaya E.B., Fursenko E.A., Shevchenko N.P. (2020). Organic geochemistry and microfossils of the Upper Jurassic and Lower Cretaceous of the lower reaches of the Olenek River (northeastern framing of the Siberian platform, Arctic Siberia). Russian Geology and Geophysics, 61 (2), pp. 1412–1428. https://doi.org/10.15372/rGG2020131

24. Kashircev V.A., Parfenova T.M., Golovko A.K., Nikitenko B.L., Zueva I.N., Chalaya O.N. (2018b). Phenanthrene biomarkers in the organic matter of Precambrian and Phanerozoic deposits and in the oils of the Siberian Platform. Russian Geology and Geophysics, 59(10), pp. 1380–1388. https://doi.org/10.1016/j.rgg.2018.09.013

25. Kashircev V.A., Sovetov Yu.K., Kostyreva E.A., Melenevskiy V.N., Kuchkina A.Yu. (2009). New homologous series of biomarker molecules from Vendian deposits of the Sayan-adjacent Biryusa area. Russian Geology and Geophysics, 50(6), pp. 541–545. https://doi.org/10.1016/j.rgg.2008.12.001

26. Kontorovich A.E., Verkhovskaya N.A., Timoshina I.D., Fomichev A.S. The carbon isotopic composition of dispersed organic matter and bitumoids and some controversial issues in the theory of oil formation. Geologiya i geofizika, 1986, (5), pp. 3–12. (In Russ.)

27. Lopatin N.V., Yemets T.P. (1987). Pyrolysis in oil and gas geochemistry. Moscow: Nauka Publ., 144 p. (In Russ.)

28. Matthews D.E., Hayes J.M. (1978). Isotope-ratio-monitoring gas chromatography-mass spectrometry. Analytical Chemistry, 50(11), pp. 1465–1473. https://doi.org/10.1021/ac50033a022

29. Otto A., Simoneit B.R.D. (2001). Chemosystematics and diagenesis of terpenoids in fossils and conifer species and sediment from the eocene Zeitz formation, saxony Germany. Geochim. Cosmochim. Acta, 64, pp. 3505–3527. HTTPS://DOI.ORG/10.1016/S0016-7037(01)00693-7

30. Parfenova T.M., Suslova E.A. (2019). New information on the geochemistry of scattered organic matter of Neoproterozoic rocks in the southeast of the Siberian platform. New ideas in the geology of oil and gas: Proceedings of the international scientific and practical conference. Moscow, p. 363. (In Russ.)

31. Peters K.E., Walters C.C., Moldowan J.M. (2007). The biomarker guide. Cambridge: Cambridge University Press, 1155 p. https://doi.org/10.1017/CBO9781107326040

32. Petеrs K.E., Moldowan J.M. (1993). The biomarker guide: interpreting molecular fossils in petroleum and ancient sediments. New Jersey: Prentice Hall, Englwood Cliffs, 363 p.

33. Radke M., Welte D.H., Willsch H. (1986). Maturity parameters based on aromatic hydrocarbons: Influens of the organic matter type. Organic Geochemistry, 10, pp. 51–63. https://doi.org/10.1016/0146-6380(86)90008-2

34. Radke M., Willsch H., Leuthaeuser D., Teichmuller M. (1982). Aromatic components of coal: relation of distribution pattern to rank. Geochimica et Cosmochimica Acta, 46, pp. 1831–1848. DOI: 10.1016/0016-7037(82)90122-3

35. Riboulleau А., Baudin F., Deconinck J.-F. Derenne s., Largeau C., Tribovillard N. (2003). Depositional conditions and organic matter preservation pathways in an epicontinental environment: the Upper Jurassic Kashpir Oil Shales (Volga Basin, Russia). Palaeogeograplly, Palaeoclimatology, Palaeoecology, 197, pp. 171–197. DOI: 10.1016/S0031-0182(03)00460-7

36. Riboulleau А., Derenne S., Largeau с., Baudin F. (2001). Origin of contrasted features and preservation pathways in kerogeпs frоm the Kashpir oil shales (Uрреr Jurassic, Russian platform). Org. Geochem., 32, pp. 647–665. https://doi.org/10.1016/S0146-6380(01)00017-1

37. Riboulleau А., Derenne S., Sаrrеt G., Largeau C. (2000). Pyrolytic and spectroscopic study of а sulphur-rich kerogen from the “Kashpir oil shales» (Upper Jurassic, Russian platform). Org. Geochem., 31, pp. 1641–1661. https://doi.org/10.1016/S0146-6380(00)00088-7

38. Sсhou L., Myhr M.B. (1988). Sulfur aromatic compounds as maturity parameters. Organic Geochemistry, 13, pp. 61–66. https://doi.org/10.1016/0146-6380(88)90025-3

39. Strakhov N.M. (1934). Oil shales of the Perisphinctes panderi d’Orb zone. Byul. MOIP. Otd. geol., 12(2), pp. 200–250. (In Russ.)

40. Summons R.E., Powell Т. G. (1986). сhlоrоbiаceae in Palaeozoic seas revealed by biological markers, isotopes and geology. Nature, 319. pp. 763–765. https://doi.org/10.1038/319763a0

41. Timoshina I.D., Boldushevskaya L.N. (2020). Geochemistry of Neoproterozoic organic matter in the southeast of the Siberian Platform. Georesursy = Georesources, 22(4), pp. 41–54. (In Russ.) https://doi.org/10.18599/grs.2020.4.41-54

42. Timoshina I.D., Ivanova E.N. (2023). On the geochemistry of the organic matter of the oil shales of the Kashpirskoye deposit of the Volga-Ural basin. Geochemistry and petrography of coal, oil shale and bituminous rocks: Proceedings of the Russian Scientific Conference. Syktyvkar: IG Komi NC URO RAN, pp. 112–114. (In Russ.)

43. Timoshina I.D., Fomin A.N. (2020). Organic geochemistry of Cenozoic rocks of the Ushumun brown coal deposit of the Middle Amur sedimentary basin. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov = Proceedings of Tomsk Polytechnic University. Georesource Engineering, 331 (5), pp. 147–157. (In Russ.) https://doi.org/10.18799/24131830/2020/5/2646

44. Timoshina I.D., Fomin A.N., Kontorovich A.E. (2024). Geochemistry of brown coal Organic Matter in Barzassky field, Kuznetsk Basin. Geologiya Nefti I Gaza = Russian Oil And Gas Geology, (2), pp. 73–86. DOI: 10.47148/0016-7894-2024-2-0-0

45. Tissot B.P., Welte D.H. (1978). Petroleum formation and occurrence. Berlin-Heidelberg-New York: Springer-Verlag, 538 p.

46. Urman O.S., Dzyuba O.S., Shurygin B.N. (2014). Preliminary results of the study of the Kashpir section (Middle Volga region). Proceedings of the Seventh All-Russian Meeting with international participation “The Cretaceous system of Russia and the Near Abroad: problems of stratigraphy and paleogeography”, Vladivostok: Dal’nauka, pp. 318–322. (In Russ.)

47. Van Kaam-Peters H.M.E., Schouten S., Köster J., Sinninghe Damsté J.S. (1998). Controls on the molecular and carbon isotopic composition of organic matter deposited in a Kimmeridgian euxinic shelf sea: Evidence for preservation of carbohydrates through sulfurization. Geochim. Cosmochim. Acta, 62 (19–20), pp. 3259–3284. https://doi.org/10.1016/S0016-7037(98)00231-2

48. Volkman J.K., Zhang Z., Xie X., Qin J., Borjigin T. (2015). Biomarker evidence for Botryococcus and a methane cycle in Eocene Huadian oil shale, NE China. Org. Geochem., 78, 121–134. https://doi.org/10.1016/j.orggeochem.2014.11.002

49. Werner R.A., Brand W.A. (2001). Referencing strategies and techniques in stable isotope ratio analysis. Rapid Communications in Mass Spectrometry, 15 (7), pp. 501–519. https://doi.org/10.1002/rcm.258


Review

For citations:


Timoshina I.D., Ivanova E.N. Organic Geochemistry of Bituminous Shales in the Kashpirskoe field (Samara region). Georesursy = Georesources. 2024;26(4):32-44. (In Russ.) https://doi.org/10.18599/grs.2024.4.17

Views: 458


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1608-5043 (Print)
ISSN 1608-5078 (Online)