Modeling of Salt Tectogenesis in Connection With the Choice of the Main Directions for the Search For Hydrocarbon Deposits and Hydromineral Raw Materials Within the Kempendyai Depression (South-East оf the Siberian Platform)
https://doi.org/10.18599/grs.2024.4.7
Abstract
A brief description of the geological structure of the sedimentary cover within the Kempendyai depression is given, in which two intervals of formation of unstable layers in the Cambrian and Devonian are distinguished, and their salt saturation is estimated. A generalized geo-density model of the sedimentary cover has been compiled, and approximate scales and duration of interruptions in the Phanerozoic sedimentation history are given. Numerical modeling of salt tectogenesis is performed by solving the problem of calculating the creeping flow of a Newtonian fluid with variable density and constant viscosity. The leading role of the surfacing of Devonian salts, the most active phase of which occurred in the Jurassic period, in the formation of local sedimentary cover structures with the subordinate nature of the dynamics of Cambrian salts is shown. It is proposed to identify subcortical zones composed of Devonian diapir salts as the most promising areas in terms of oil and gas content, and possibly in terms of lithium-bearing brines.
Keywords
About the Authors
B. V. LunevRussian Federation
Boris V. Lunev – Cand. Sci. (Physics and Mathematics), Senior Researcher.
3 Koptug ave., Novosibirsk, 630090
I. A. Gubin
Russian Federation
Igor A. Gubin – Cand. Sci. (Geology and Mineralogy), Head of Laboratory.
3 Koptug ave., Novosibirsk, 630090
V. V. Lapkovsky
Russian Federation
Vladimir V. Lapkovsky – Dr. Sci. (Geology and Mineralogy), Head of Laboratory.
3 Koptug ave., Novosibirsk, 630090
R. V. Marinov
Russian Federation
Roman V. Marinov – Junior Researcher.
3 Koptug ave., Novosibirsk, 630090
References
1. Abramov T., Lavrentiev M., Lunev B. (2016). Implementation and Testing of the Fast Numerical Algorithm for Simulation of 3D Gravity Creeping Flow of Incompressible Newtonian Fluid. Proc. 2nd International Conference on Applications in Information Technology. Aizu-Wakamatsu, Japan, The University of Aizu Press, pp. 121–124.
2. Alekseev S.V., Alekseeva L.P., Vakhromeev A.G., Vladimirov A.G., Volkova N.I. (2012). Lithium-bearing ground waters of the Irkutsk region and West Yakutia. Himia v interesah ustoichivogo razvitiya, 20, pp. 27–33. (In Russ.)
3. Astarita G., Marucci G. (1974). Principles of Non-Newtonian Fluid Mechanics. New York: Mc Graw-Hill, 289 p.
4. Atlas “Basic geological and geophysical profiles of Russia” (2013). Deep seismic sections according to the profiles of the GSZ, worked out in the period from 1972 to 1995. St.Petersburg: VSEGEI, 94 p. (In Russ.)
5. Babayan G.D. (1973). Tectonics and oil and gas content of the Vilyui syneclise and adjacent areas according to geophysical geological materials. Novosibirsk: Nauka, Sib. Branch, 137 p. (In Russ.)
6. Babayan G.D., Mokshantsev K.B., Uarov V.F. (1978). Earth crust of the eastern part of the Siberian platform. Novosibirsk: Nauka, Sib. branch, 56 p. (In russ.)
7. Bobrov A.K., Gribova N.A., Gryaznov N.K. (1954). The main features of the geological structure and prospects of oil production in Eastern Siberia. Leningrad: Tr. VNIGRI, 13, p. 413. (In Russ.)
8. Certificate of state registration of a computer program (2017). No. 2018612365, application No. 2017663574 dated 26.12.2017, registered 16.02.2018. (In russ.)
9. Cherdantsev G.A., Golovin S.V. (2018). Petroleum prospects update concerning Middle-Paleozoic sequences belonging the Southern part of Viluyui Syneclise. Neftegazovaya geologiya. Teoriya i praktika, 13(3). (In Russ.) https://doi.org/10.17353/2070-5379/33_2018
10. Chumakov N.M. (1959). Stratigraphy and tectonics of the southwestern part of the Vilyui depression. Tectonics of the USSR. Moscow: USSR Academy of Sciences. (In Russ.)
11. Dubrovin M.A. (1979). Salt tectonics of the Upper Lena depression of the Siberian platform. Novosibirsk: Nauka, 96 p. (In Russ.)
12. Fradkin G.S. (1967). Geological structure and prospects of oil and gas potential of the western part of the Vilyui syneclise. Moscow: Nauka, 215 p. (In russ.)
13. Gaiduk V.V. (1988). The Vilyui Middle Paleozoic rift system. Yakutsk: YAF SB of the USSR Academy of Sciences, 211 p. (In Russ.)
14. Gubin I.A., Abramov T.V., Kanakov M.S., Lunev B.V. (2016). Numerical Modeling of Salt Tectogenesis in the West of the Irkutsk Amphitheater. Geomodel-2016, p.8. https://doi.org/10.3997/2214-4609.201602207
15. Ivanov Yu.A., Belikova S.V. (1989). Forecast of oil and gas potential of the Upper Vendian-Cambrian salt-carbonate formation of Eastern Siberia. Moscow: VNIIOENG, 39 p. (In Russ.)
16. Jackson M.P.A., Talbot C.J. (1986). External shapes, strain rates and dynamics of salt structures. Geological Society of America Bulletin, 97, pp. 305–323. https://doi.org/10.1130/0016-7606(1986)97<305:ESSRAD>2.0.CO;2
17. Kalinko M.K. (1973). Salt accumulation, formation of salt structures and their effect on oil and gas content. Moscow: Nedra, 134 p. (In Russ.)
18. Kontorovich V.A., Lunev B.V., Lapkovsky V.V., 2019. Geological and geophysical characteristics of the Anabar-Khatanga Oil and Gas Province; numerical modeling of the processes of formation of salt domes (Siberian sector of the Russian Arctics). Geodynamics&Tectonophysics, 10(2), pp. 459–470. (In Russ.) https://doi.org/10.5800/GT-2019-10-2-0421
19. Kolodeznikov K.E. (1975). To the genesis of the Devonian saline sediments of the Devonian of the Kempendiai depression. Dokl. of the USSR Academy of Sciences, 223(4), pp. 976–978. (In Russ.)
20. Kolodeznikov K.E. (1982). Devonian and Lower Carboniferous of the western part of the of the Vilyui syneclise. Moscow: Nauka, 101 p. (In Russ.)
21. Lunev B.V. (1996). The upper mantle density anomaly above the MidAtlantic Ridge: its nature and role in rifting and spreading. Geologiya i geofizika, 37(9), pp. 87–101. (In Russ.)
22. Lunev B.V., Abramov T.V. (2014). Highly efficient computation of 3-D creeping currents for operational modelling of salt tectogenesis. Peterhof: Petrophysical modelling of sedimentary rocks: III Baltic School-Seminar (BalticPetroModel-2014). (In Russ.)
23. Lunev B.V., Аbramov T.V., Lapkovsky V.V., Priimenko V.I. (2017). An efficient 3D modeling of salt tectogenesis for prediction subsalt structure. Tehnologii seismorazvedki, 3, pp. 96–103. (In Russ.) doi: 10.18303/1813-4254-2017-3-96-103
24. Lunev B.V., Lapkovsky V.V. (2014). Mechanism of development of inversion folding in the subsalt. Izvestiya, Physics of the Solid Earth, 50(1), pp. 57–63. (In Russ.) doi: 10.7868/S0002333714010062
25. Lunev, B. V. (1986). Isostasis as a dynamic equilibrium of a viscous liquid. Reports of the USSR Academy of Sciences, 290(1), pp. 72–76. (In russ.)
26. Megacomplexes and deep structures of the Earth’s crust of the oil and gas–bearing provinces of the Siberian platform (1987). Ed. V. S. Surkov. Moscow: Nedra, 204 p. (In Russ.)
27. Melnikov P.N., Pogodaev A.V., Matveev A.I., Poroskun V.I., Tsarev V.V., Soboleva E.N. (2023). Discovery of new Petroleum District on north-western slope of Aldansky Syneclise (Siberian Platform). Geologiya nefti i gaza, (2), pp. 5–16. (In Russ.) doi: 10.31087/0016-7894-2023-2-5-16
28. Mokshantsev K.B., Gornstein D.K., Gusev G.S., Dengin E.V., Shtekh G.I. (1964). Tectonic structure of the Yakut ASSR. Moscow: Nauka, 291 p. (In russ.)
29. Mokshantsev K.B., Gornstein D.K., Gusev G.S., Lutz B.G., Petrov A.F., Slastenov Y.L., Frumkin I.M., Shtekh G.I. (1975). Tectonics of Yakutia. Novosibirsk: Nauka, Siberian Branch, 198 p. (In Russ.)
30. Pashkevich, N.G. (1971). Comparative characterization of spore complexes of the Famennian Stage of the Kempendian dislocations area. Palynological characterization of Paleozoic, Mesozoic and Cenozoic sediments of Yakutia. Yakutsk: Yakutknigoizdat, pp. 40–45. (In Russ.)
31. Pratsch J.C. (1989). Salt in Oil and Gas Exploration offshore Gulf Coast Region, U.S.A. Gulf of Mexico Salt Tectonics, Associated Processes and Exploration Potential, pp. 111–114. https://doi.org/10.5724/gcs.89.10.0111
32. Prokopiev A.V., Kozmin B.M., Smelov A.P. (2001). Tectonics, geodynamics and metallogeny of the Sakha Republic (Yakutia). Nauka Interperiodica, 571 p. (In russ.)
33. Shteh G.I. (1965). The deep structure and history of tectonic development of the Vilyui depression. Moscow: Nauka, 124 p. (In Russ.)
34. Sivtsev A.I.1, Alexandrov A.R. (2014). Galokinez in tectonic structure of Kempendyai depression. Neftegazovoe delo. 5, pp. 54–70. (In russ.) https://doi.org/10.17122/ogbus-2014-5-54-70
35. State Geological Map of the Russian Federation (1994). Scale 1: 1,000,000 (new series). List P-50, 51 – Olekminsk. Explanatory note. Russian Geological Research Institute (VSEGEI), p. 211. (In Russ.)
36. Trufanova N.V., Krivoshchekov A.L., Naumova Yu.A. (2007). Methodology and results of kinematic interpretation according to the regional profile “Kovyktinskoye field-Predatomsky trough”. Tehnologii seismorazvedki, 3, pp. 83–90. (In Russ.)
37. Veinberg M.K. (1974). Tectonics of the southwestern part of the Vilyui syneclise based on the results of seismic exploration. Abstract Cand. geol. and min. sci. diss. Leningrad, 16 p. (In Russ.)
38. Xue Y., Luan X., Raveendrasinghe T.D., Wei X, Jin L., Yin J., Qiao J. (2024). Implications of Salt Tectonics on Hydrocarbon Ascent in the Eastern Persian Gulf: Insights into the Formation Mechanism of Salt Diapirs, Gas Chimneys, and Their Sedimentary Interactions. J. Ocean Univ. China, pp. 1–19. https://doi.org/10.1007/s11802-024-5821-8
39. Zabanbark A. (2020). Geology and prospects of oil and gas potential of Santos basin. Geologiya, geofizika i razrabotka neftyanykh i gazovykh mestorozhdeniy, 6, pp. 26–31. (In Russ.) DOI: 10.30713/2413-5011-2020-6(342)-26-31
Review
For citations:
Lunev B.V., Gubin I.A., Lapkovsky V.V., Marinov R.V. Modeling of Salt Tectogenesis in Connection With the Choice of the Main Directions for the Search For Hydrocarbon Deposits and Hydromineral Raw Materials Within the Kempendyai Depression (South-East оf the Siberian Platform). Georesursy = Georesources. 2024;26(4):176-186. (In Russ.) https://doi.org/10.18599/grs.2024.4.7