Application of Lithological and Geochemical Approach to Determine the Genesis of Dolomite Cavernous Reservoir (Lower Devonian, Gydan Peninsula)
https://doi.org/10.18599/grs.2025.1.22
Abstract
To evaluate the origin of cavernous hydrocarbon reservoir in the Lower Devonian dolostones (Western Taimyr, eastern coast of the Gydan Peninsula), the host rocks and the infilling carbonate minerals were studied using an integrated approach, including petrographic, cathodoluminescence, isotopic, geochemical and fluid inclusion studies. This approach showed that limestones that accumulated in the open subtidal shelf zone underwent dolomitization in early diagenesis, and dolomites with a fine-crystalline matrix were formed; the dolostones were significantly compacted during subsequent subsidence and geostatic compaction. The dolostones underwent fracturing the Late Hercynian tectonic phase (Late Carboniferous – Permian); fractures are associated with fissure caverns. Both fractures and caverns are partially filled with high-temperature generations of dolomite, quartz and calcite; low negative δ18о values and high positive Eu/ Eu* anomalies confirm their hydrothermal genesis. Similarity in PAAS-normalized patterns of Rare Earth Elements in the host rock and vein (cavernous) carbonate mineral indicates that the source for the infilling carbonate was the host rock. The results obtained show the high potential of using the applied approach in establishing the stages of development of a carbonate reservoir and for predicting its distribution in the section and area.
About the Authors
К. Yu. VasilevaRussian Federation
Kseniya Yu. Vasilyeva, Cand. Sci. (Geology and Mineralogy), Associate Professor
199034; 7/9 Universitetskaya nab.; St. Petersburg
V. B. Ershova
Russian Federation
Victoria B. Ershova, Cand. Sci. (Geology and Mineralogy), Associate Professor
199034; 7/9 Universitetskaya nab.; St. Petersburg; Moscow
А. P. Vilesov
Russian Federation
Alexander P. Vilesov, Cand. Sci. (Geology and Mineralogy), Expert on the sedimentology of carbonate reservoirs
190000; 75–79 liter D, Moika River emb.; St. Petersburg
Т. G. Okuneva
Russian Federation
Tatiana G. Okuneva, Researcher
Laboratory of Physical and Chemical Research
620010; 15 Akademik Vonsovskiy st.; Ekaterinburg
А. D. Rybakova
Russian Federation
Anna D. Rybakova, Research Engineer
Laboratory of Physical and Chemical Research
620010; 15 Akademik Vonsovskiy st.; Ekaterinburg
N. G. Soloshenko
Russian Federation
Natalia G. Soloshenko, Head of the group
620010; 15 Akademik Vonsovskiy st.; Ekaterinburg
V. Yu. Prokofiev
Russian Federation
Vsevolod Yu. Prokofiev, Dr. Sci. (Geology and Mineralogy), Leading Researcher
119017; 35 Staromonetny Lane; Moscow
А. Е. Masloboeva
Russian Federation
Anna E. Masloboeva, Research Engineer
199034; 7/9 Universitetskaya nab.; St. Petersburg
D. А. Sevrukov
Russian Federation
Denis A. Sevruykov, Deputy project manager for geology and development
191167; 22, Sinopskaya emb.; St. Petersburg
I. Yu. Bugrova
Russian Federation
Irina Yu. Bugrova, Cand. Sci. (Geology and Mineralogy), Associate Professor
199034; 7/9 Universitetskaya nab.; St. Petersburg
References
1. Ahr W.M. (2008). Geology of Carbonate Reservoirs. New York: John Wiley and Sons, 277 p. doi: 10.1002/9780470370650
2. Alexander B.W., Bau M., Andersson P., Dulski P. (2008). Continentallyderived solutes in shallow Archean seawater: Rare earth element and Nd isotope evidence in iron formation from the 2.9 Ga Pongola Supergroup, South Africa. Geochim. Et Cosmochim Acta, 72, рр. 378–394. doi: 10.1016/j.gca.2007.10.028
3. Bai H., Huang W., Ma B., Wang W. (2020). Mesogenetic diagenesis of the Ordovician limestone in Yubei area, Tarim Basin, NW China. Carbonates Evaporites 35, 77. doi: 10.1007/s13146-020-00610-8
4. Breislin C.J., Banks V.J., Crowley S.F., Marshall J.D., Millar I., Riding J.B., Hollis C.E. (2022). Mechanisms controlling the localisation of faultcontrolled hydrothermal dolomitisation, Derbyshire Platform, UK. The Depositional Record, 9(3), рр. 734–758. doi: 10.1002/dep2.214
5. Bukatova E.M., Uzhegova Yu.A., Pogrebnyuk S.A., Fedorov S.A., Vilesov A.P., Peretolchin K.A., Morozov N.V., Granovskii A.M. (2022). Oil and gas potential prospects of the Ordovician-Carboniferous deposits for West Taimyr under limited data conditions. PRONEFT. Professional’no o nefti, 7(4), pp. 28–39. (In Russ.)
6. Choquette P.W., Pray, L.C. (1970). Geologic Nomenclature and Classification of Porosity in Sedimentary Carbonates. American Association of Petroleum Geologists Bulletin, 54, рр. 207–250. doi: 10.1306/5D25C98B-16C1-11D7-8645000102C1865D
7. Dan Y., Lin L., Liang B., Zhang Q., Yu Y., Cao J., Li J. (2018). Eogenetic Karst Control of Carbonate Reservoirs during a Transient Exposure: A Case Study of the Ordovician Yingshan Formation in the Northern Slope of the Tazhong Uplift, Tarim Basin, China. Minerals, 8(8), 342. doi: 10.3390/min8080345
8. Dunham R.J. (1962). Classification of carbonate rocks according to depositional texture. AAPG, 1, рр. 108–121. doi: 10.1306/M1357
9. Davies G.R., Smith L.B. (2006). Structurally controlled hydrothermal dolomite reservoir facies : an overview. American Association of Petroleum Geologists, Bulletin, 90, рр. 1641–1690. doi: 10.1306/05220605164
10. Dristas J.A., Martínez J.C., van den Kerkhof A.M., Massonne H.J., Theye T., Frisicale M.C., Gregori D.A. (2017). Hydrothermal karst and associated breccias in Neoproterozoic limestone from the Barker-Villa Cacique area (Tandilia belt), Argentina. Journal of South American Earth Sciences, 76(7), рр. 182–197. doi: 10.1016/j.jsames.2017.03.002
11. Flugel E. (2010). Microfacies of Carbonate Rocks. Analysis, Interpretation and Application. Second Edition. Springer-Verlag Berlin Heiderberg, 984 p. doi: 10.1007/978-3-642-03796-2
12. Folk R.L. (1965). Some aspects of recrystallization in ancient limestones. L. C. Pray, and R. S. Murray, eds. Dolomitization and Limestone Diagenesis: Tulsa, OK, SEPM Special Publication, 13, pр. 14–48.
13. Fu Q., Qing H., Bergman K. M. (2006). Dolomitization of the Middle Devonian Winnipegosis carbonates in south-central Saskatchewan, Canada. Sedimentology, 53(4), рр. 825–848. doi: 10.1111/j.1365-3091.2006.00794.x
14. Koeshidayatullah A., Corlett H., Stacey J., Swart P., Boyce A., Robertson H., Whitaker F., Hollis C. (2020). Evaluating new fault-controlled hydrothermal dolomitization models: Insights from the Cambrian Dolomite, Western Canadian Sedimentary Basin. Sedimentology, 67(6), рр. 2945–2973. doi: 10.1111/sed.12729
15. Liang J., Liu S., Li L., Dai J., Li X., Mou C. (2022). Geochemical Constraints on the Hydrothermal Dolomitization of the Middle-Upper Cambrian Xixiangchi Formation in the Sichuan Basin, China. Frontiers in Earth Science, 10. doi: 10.3389/feart.2022.927066
16. Machel H.G. (2004). Concepts and models of dolomitization: a critical reappraisal. Geological Society, 235, рр. 7–63. doi: 10.1144/GSL.SP.2004.235.01.02
17. Michard A., Albarède F. (1986). The REE content of some hydrothermal fluids. Chem. Geol, 55, рр. 51–60. doi: 10.1016/0009-2541(86)90127-0
18. Mongelli G., Sinisi R., Paternoster M., Perri F. (2018). REEs and U distribution in P-rich nodules from Gelasian Apulian Tethyan carbonate: A genetic record. J. Geochem. Explor, 194, рр. 19–28. doi: 10.1016/j.gexplo.2018.07.010
19. Moore C.H., Wade W.J. (2013). Carbonate reservoirs porosity and diagenesis in a sequence stratigraphic framework. Amsterdam, Netherlands; Oxford, England: Elsevier, 389 p.
20. Peretolchin K.A., Ershova V.B., Khudoley A.K., Nilov S.R. (2022). Tectonic history of the junction zone of the Taimyr fold-thrust belt and the structures of the Gydan Peninsula. PRONEFT. Professional’no o nefti, 7(4), pp. 83–93. (In Russ.)
21. Sibley D.F., Gregg J.M. (1987). Classification of dolomite rock textures.Journal of Sedimentary Petrology, 57, pp. 967–975. doi: 10.1306/212F8CBA-2B24-11D7-8648000102C1865D
22. Vilesov A.Р., Chertina K.N. (2020). Paleoкarst, hydrothermal karst and karst reservoirs of the Franian reefs of the Rybkinsky group. Georesursy = Georesources, 22, pp. 15–28. (In Russ.)
23. Vilesov A.P., Ershova V.B., Solovyeva A.D. (2022). Lithological and sedimentological characteristics of the Paleozoic of the West Taimyr potential oil and gas bearing area (according to drilling data). PRONEFT. Professional’no o nefti, 7(4), pp. 14–27. (In Russ.)
24. Yapaskurt O.V. Stadial analysis of lithogenesis (1994). Moscow: Moscow State University, 142 p. (In Russ.)
25. Yurchenko A., Voropaev A., Kozlova E., Morozov N., Spasennykh M. (2021). Application of the Data on δ13C and δ18O of Carbonates for the Study of Unconventional Reservoirs on the Example of the Bazhenov Source Rocks, Western Siberia, Russia. Geoscience, 11(7), рр. 264–280. doi: 10.3390/geosciences11070264
26. Zheng H., Ma Y., Chi G., Qing H., Liu B., Zhang X., Shen Y., Liu J., Wang Y. (2019). Stratigraphic and Structural Control on Hydrothermal Dolomitization in the Middle Permian Carbonates, Southwestern Sichuan Basin (China). Minerals, 9(1). doi: 10.3390/min9010032
27. Zinchenko I.A., Morozov N.V., Peretolchin K.A., Kurkin A.A., Pogrebnyuk S.A. (2022). History of development of petroleum systems within the West Taimyr potential oil and gas bearing area based on basin modeling results. PRONEFT. Professional’no o nefti, 7(4), pp. 124–133. (In Russ.)
28. Zhou Z., Wang X., Tang X., Wang W., Zhou H., Yang Y., Wen L., Huo F., Pei S. (2023). Karst paleotopography on top of the Dengying Formation and petroleum geological significance in the Central Sichuan Basin, China. Energy Exploration & Exploitation, 41(2), рр. 451–480. doi: 10.1177/01445987221143580
Review
For citations:
Vasileva К.Yu., Ershova V.B., Vilesov А.P., Okuneva Т.G., Rybakova А.D., Soloshenko N.G., Prokofiev V.Yu., Masloboeva А.Е., Sevrukov D.А., Bugrova I.Yu. Application of Lithological and Geochemical Approach to Determine the Genesis of Dolomite Cavernous Reservoir (Lower Devonian, Gydan Peninsula). Georesursy = Georesources. 2025;27(1):114-124. (In Russ.) https://doi.org/10.18599/grs.2025.1.22