Preview

Georesources

Advanced search

The Composition of Lacustrine Sediments of Lake Kandrykul (Republic of Bashkortostan) Based on Mineralogical, Geochemical Data and Climatic Changes in the Holocene

https://doi.org/10.18599/grs.2025.2.21

Abstract

This study presents the first investigation of Lake Kandrykul sediments through radiometric dating and detailed lithological and mineralogical analysis of a long (>5 m) core sample retrieved from the lake’s bottom. The results shed new light on depositional conditions in the region and contributed to a broader understanding of lake sedimentation during the late Quaternary.
Radiocarbon dating indicates that sedimentation in Lake Kandrykul began approximately 8,000 years ago. The studied depositional sequence consists of alternating layers of silty clay, silty sandy loam, heavy silty loam, and light silty loam.
Allogenic minerals make up the bulk of the sediment composition, reaching up to 76%. Elevated Ca and Mg content in several core intervals correlate with the presence of authigenic carbonate and sulfate crystals, reflecting Lake Kandrykul’s setting within an erosional-karst depression formed in sulfate-carbonate-rich sedimentary rocks.
The changing ratios between allogenic and authigenic components serve as indicators of Holocene climate shifts, particularly highlighting two major arid periods: around 6,000–5,100 years BP and 2,000–1,000 years BP.

About the Authors

A. R. Yusupova
Kazan Federal University
Russian Federation

Anastasia R. Yusupova – Cand. Sci. (Geology and Mineralogy), Senior Researcher, Institute of Geology and Petroleum Technology

4/5, Kremlevskaya str., Kazan, 420008



N. G. Nourgalieva
Kazan Federal University
Russian Federation

Nouria G. Nourgalieva – Dr. Sci. (Geology and Mineralogy), Professor, Department of Oil and Gas Geology, Institute of Geology and Petroleum Technology

4/5, Kremlevskaya str., Kazan, 420008



D. M. Kuzina
Kazan Federal University
Russian Federation

Dilyara M. Kuzina – Cand. Sci. (Geology and Mineralogy), Senior Researcher, Institute of Geology and Petroleum Technology

4/5, Kremlevskaya str., Kazan, 420008



H. Ch. Li
National Taiwan University
Taiwan, Province of China

Hong-Chun Li – Dr. Sc., Professor of Geosciences

No. 1, Sec. 4, Roosevelt Road, Taipei 106



References

1. Abdrakhmanov R.F. (2005). Hydrogeoecology of Bashkortostan. Ufa: Informreklama, 344 p. (In Russ.)

2. Abdrakhmanov R.F., Martin V.I., Popov V.G. Rozhdestvensky A.P., Smirnov A.I., Travkin A.I. (2002). Karst of Bashkortostan. Ufa: Institute of Geology, Ufa Scientific Center of the Russian Academy of Sciences, 383 p. (In Russ.)

3. Alley R.B., Clark P.U. (1999). The deglaciation of the Northern Hemisphere: A global perspective. Annual. Reviews of Earth and Planetary Sciences, 27, pp. 149–182. https://doi.org/10.1146/annurev.earth.27.1.149

4. Bentz J.L., Peterson R.C. (2021). Authigenic Phyllosilicates in Sand Layers from the Mudflats of Saline Lakes in the Northern Great Prairies, Saskatchewan. The Canadian Mineralogist, 60(1), pp. 101–120. https://doi.org/10.3749/canmin.1900065

5. Björnerås C., Persson P., Weyhenmeyer G.A., Hammarlund D., Kritzberg E.S. (2021). The lake as an iron sink-new insights on the role of iron speciation. Chemical Geology, 584, 120529. https://doi.org/10.1016/j.chemgeo.2021.120529

6. Blaauw M., Christen J.A. (2011). Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis, 6, pp. 457–474. https://doi.org/10.1214/ba/1339616472

7. Blytt A.G. (1876a). Essay on the immigration of the Norwegian flora during alternating rainy and dry periods. Christiania (Oslo): Cammermeyer, 89 р.

8. Blytt A.G. (1876b). ForsØg til en theori om indvandringen af Norges flora under vexlende regnfulde og tørre Tider. Nyt Mag. Naturvid. Christiana (Oslo), 21, pp. 279–362.

9. Borisova O.K. (2014). Landscape and Climatе Change in Holocene. Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya, 2, pp. 5–20. (In Russ.) https://doi.org/10.15356/0373-2444-2014-2-5-20

10. Bristow T.F., Kennedy M.J., Morrison K.D., Mrofka D.D. (2012). The influence of authigenic clay formation on the mineralogy and stable isotopic record of lacustrine carbonates. Geochimica et Cosmochimica Acta, 90, pp. 64–82. https://doi.org/10.1016/j.gca.2012.05.006

11. Brock F., Higham T., Ditchfield P., Ramsey C.B. (2010). Current pretreatment methods for AMS radiocarbon dating at the Oxford radiocarbon accelerator unit (ORAU). Radiocarbon, 52, pp. 103–112. https://doi.org/10.1017/S0033822200045069

12. Egli R. (2004). Characterization of individual rock magnetic components by analysis of remanence curves. 2. Fundamental properties of coercivity distributions. Physics and Chemistry of the Earth, 29(13/14), pp. 851–867. https://doi.org/10.1016/j.pce.2004.04.001

13. Eskina G.M., Morozov V.P. (2020). X-ray analysis in the study of minerals. Ores and rocks. Kazan: Kazan. University, 43 p. (In Russ.)

14. Evans M., Heller F. (2003). Environmental magnetism: Principles and applications of enviromagnetics. San Diego: Academic Press, 299 p.

15. Gradstein F.M., Felix M. Gradstein, Ogg J.G., Schmitz M.D., Ogg G.M. (2020). The geologic time scale 2020. Elsevier, 2, 1390 p. https://doi.org/10.1127/nos/2020/0634

16. Grim R.E. (1953). Clay mineralogy. N.Y.: McGraw-Hill Book Co. Inc., 384 p. https://doi.org/10.1097/00010694-195310000-00009

17. Guo P., Wen H., Li Ch., He H., Sánchez-Román M. (2023) Lacustrine dolomite in deep time: What really matters in early dolomite formation and accumulation? Earth-Science Reviews, 246, 104575. https://doi.org/10.1016/j.earscirev.2023.104575

18. Hammer U.T. (1986). Saline Lake ecosystems of the world. Dr W. Junk Publ., Dordrecht, Netherlands, 616 p.

19. Kandrykul. Bashkortostan. A brief encyclopedia. (1996). Ufa: Bashkir Encyclopedia, 321 p. (In Russ.)

20. Khokhlova O.S., Morgunova N.L., Khokhlov A.A., Gol’eva A.A. (2018). Climate and Vegetation Changes over the Past 7000 Years in the Cis-Ural Steppe. Euras. Soil Sci., 51, pp. 506–517. https://doi.org/10.1134/S106422931805006X

21. Kilian R., Lamy F. (2012). A review of Glacial and Holocene paleoclimate records from southernmost Patagonia (49–55°S). Review Article Quaternary Science Reviews, 53, pp. 1–23. https://doi.org/10.1016/j.quascirev.2012.07.017

22. Klimanov V.A., Nemkova V.K. (1988). Climate change in Bashkiria in the Holocene. Paleoclimates of the Holocene of the European territory of the USSR. Moscow: Nauka, pp. 45–51. (In Russ.)

23. Kuzina D.M., Yusupova A.R., Nurgalieva N.G., Nurgaliev D.K., Krylov P.S., Mulikova D.I. (2024). Magnetic properties of lake Kandrykul sediments (Republic of Bashkortostan, Russian Federation). Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering, 335(10), pp. 43–55. https://doi.org/10.18799/24131830/2024/10/4460

24. Lamentowicz M., Obremska M., Mitchell E.A.D. (2008). Autogenic succession, land-use change, and climatic influences on the Holocene development of a kettle-hole mire in Northern Poland. Review of Palaeobotany and Palynology, 151, pp. 21–40. https://doi.org/10.1016/j.revpalbo.2008.01.009

25. Leeder, M. (1986). Sedimentology. Processes and products (Translated from English). Moscow: Mir, 439 p. (In Russ.)

26. Li H-C., Chang Y., Berelson W.M., Zhao M., Misra S., Shen T-T. (2022). Interannual Variations of D14CTOC and Elemental Contents in the Laminated Sediments of the Santa Barbara Basin During the Past 200 Years. Front. Mar. Sci., 9, Art. No. 823793. https://doi.org/10.3389/fmars.2022.823793

27. Logvinenko N.В. (1984). Petrography of sedimentary rocks with the basics of research methodology. Moscow: Higher School, 416 p. (In Russ.)

28. Maltsev A.E. (2017). Geochemistry of Holocene sapropel sections of small lakes in the south of Western Siberia and Eastern Pribaikalia. Cand. Geol. and Min. Sci. Diss. Novosibirsk: Vinogradov Institute of Geochemistry, Siberian Branch of the Russian Academy of Sciences, 199 p. (In Russ.)

29. Maslennikova A.V., Artemiev D.A., Zazovskaia E.P., Deryagin V.V., Gulakov V.O., Udachin N.V., Aminov P.G., Udachin V.N. (2023). Geochemical record of Lake Sabakty: Electrical conductivity and reconstruction of the Lateglacial and Holocene environments in the Southern Urals (Russia) steppe. LITHOSPHERE (Russia), 23(3), pp. 410–429. https://doi.org/10.24930/1681–9004-2023-23-3-410-429

30. Maslennikova A.V., Udachin V.N., Anfilogov V.N. (2020). Holocene Environments of Anomalous Uranium Concentrations in Sediments of Syrytkul Lake (Southern Urals). Dokl. Earth Sci., 492(1), pp. 323–326. https://doi.org/10.1134/S1028334X2005013X

31. Maslennikova A.V., Udachin V.N., Deryagin V.В. (2014). Paleoecology and geochemistry of lake sedimentation of the Holocene of the Urals. Ekaterinburg: RIO Ural Branch of the Russian Academy of Sciences, 136 p. (In Russ.)

32. Maslennikova A.V., Udachin V.N., Pirogov D.V., Khvorov P.V. (2016). Paleolimnological reconstruction of Late Glacial and Holocene environments of Middle Urals. LITHOSPHERE (Russia), 6, pp. 166–176. (In Russ.)

33. Merilä J., Hendry A.P. (2014). Climate change, adaptation and phenotypic plasticity: The problem and the evidence. Evolutionary Applications, 7(1), pp. 1–14. https://doi.org/10.1111/eva.12137

34. Misra S., Kashyap S., Chou C.Y., Chang T.Y., Li H.C., Ning X.Y., Sun J.J., Wang J., Zhao M. (2024). The influence of plant species and pretreatment on the 14C age of Carex-dominated peat plants of a peat core from Jinchuan Mire, NE China. Radiocarbon, pp. 1–21. https://doi.org/10.1017/RDC.2023.112

35. Nemkov V.A. (2011). Entomofauna of the steppe Urals (history of formation and study, composition, changes, protection). Moscow: Universitetskaya kniga, 316 p. (In Russ.)

36. Nigamatzyanova G.R., Frolova L.A., Nigmatullin N.M., Yusupova A.R., Nurgaliev D.K. (2023). Vegetation and climate changes in the Southern Urals in the Late Glacial and Holocene derived from pollen record of Lake Bolshoe Miassovo. Geomorfologiya i Paleogeografiya, 54(4), pp. 179–194. DOI: 10.31857/S2949178923040060

37. Nigmedzyanova A.R., Borisov A.S. (2002). Seismic stratigraphic analysis of modern lake bottom sediments: paleoclimatic significance. Georesursy = Georesources, 3(11), pp. 2–3. (In Russ.)

38. Novenko E.Yu. (2021). Landscape and climate dynamics in Central and Eastern Europe during the Holocene – assessment of future environmental changes. Geomorfologiya, 52 (3), pp. 24–47. (In Russ.) https://doi.org/10.31857/S0435428121030093

39. Nurgaliev D.K., Utemov E.V., Yasonov P.G., Nurgalieva N.G., Kosareva L.R. (2009). Residues of magnetotactic bacteria in sediments of modern lakes - a new tool of paleogeophysics. Uchenye Zapiski Kazanskogo Universiteta Seriya Estestvennye Nauki, 151(4), pp. 180–191. (In Russ.)

40. Paleoclimates of the Late Glacial and Holocene (1989). USSR Academy of Sciences, Institute of Geography. Ed. by N. A. Khotinsky. Moscow: Nauka, 168 p.

41. Reding H. (1990). Sedimentation environments and facies. Vol. I. Moscow: Mir, 352 p. (In Russ.)

42. Register of specially protected natural territories of the Republic of Bashkortostan (2010). Ufa: Gilem, 414 p. (In Russ.)

43. Reimer P.J., Austin W., Bard E., Bayliss A., Blackwell P.G., Ramsey C.B., Butzin M., Cheng H., Edwards R.L., Friedrich M., Grootes P.M., Guilderson T.P., Hajdas I., Heaton T.J., Hogg A.G., Hughen K.A., Kromer B., Manning S.W., Muscheler R., Palmer J.G., Pearson C., van der Plicht J., Reimer R.W., Richards D.A., Scott E.M., Southon J.R., Turney C.S.M., Wacker L., Adolphi F., Büntgen U., Capano M., Fahrni S., Fogtmann-Schulz A., Friedrich R., Köhler P., Kudsk S., Miyake F., Olsen J., Reinig F., Sakamoto M., Sookdeo A., Talamo S. (2020). The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0-55 cal kBP). Radiocarbon, 62, pp. 725–757. https://doi.org/10.1017/RDC.2020.41

44. Rigby J., Hamblin W. (1974). Ancient Sedimentation Environments and Their Recognition. Moscow: Mir, 327 p. (In Russ.)

45. Ronov A.B., Yaroshevsky A.A., Migdisov A.A. (1990). Chemical structure of the Earth’s crust and geochemical balance of major elements. Moscow: Nauka, 180 p. (In Russ.)

46. Sernander R. (1984). Studier öfver den Ġótländska vegetationens utvecklingshistora. R. Sernander. Uppsala: Akademisk afhandling, 112 р.

47. Sherysheva N.G. (2015). State of bottom sediments of Kandry-Kul Lake (Republic of Bashkortostan) in 2010 and 2012. Izvestia Samara Scientific Center of the Russian Academy of Sciences, 17(4–5), pp. 962–971. (In Russ.)

48. Smoot J.P., Lowenstein T.K. (1991). Depositional environments of non-marine evaporites. Evaporites, petroleum, and mineral resources. New York: Elsevier. Developments in Sedimentology, 50, pp. 189–347. https://doi.org/10.1016/s0070-4571(08)70261-9

49. Solotchin P.A. (2023). Lithological and mineralogical records of bottom sediments of lakes in the Siberian region as a basis for paleoclimatic reconstructions. Dr. Geol. and Min. Sci. Diss. Novosibirsk: Vinogradov Institute of Geochemistry SB RAS, 237 p. (In Russ.)

50. Story S., Bowen B.B., Benison K.C., Schulze D.G. (2010). Authigenic phyllosilicates in modern acid saline lake sediments and implications for Mars. Journal of Geophysical Research, 115, e12012. https://doi.org/10.1029/2010JE003687

51. Strakhov N.M. (1960-1962). Fundamentals of the theory of lithogenesis. Moscow: USSR Academy of Sciences, Vol. 1: Types of lithogenesis and their distribution on the Earth’s surface, 212 p.; Vol. 2: Regularities of Composition and Distribution of Humid Deposits, 574 p.; Vol. 3: Regularities of Composition and Distribution of Arid Sediments, 558 p. (In Russ.)

52. Subetto D.A., Sevastyanov D.V., Sapelko T.V., Boinagryan V.R., Grekov I.M. (2017). Lakes as accumulative information systems and climate indicators. Astrakhanskiy vestnik ekologicheskogo obrazovaniya, 4(42), pp. 4–14. (In Russ.)

53. Uvarov V.E. (1991a). Express radiographic quantitative phase analysis (ERKFA) of rocks and soils. Instruction NSOMMI No. 29. Moscow: VIMS, 18 p. (In Russ.)

54. Uvarov V.E. (1991b). Express X-ray semi-quantitative phase analysis of clay minerals. Methodical recommendations No. 68. NSOMMI VIMS, 18 p. (In Russ.)

55. Wetzel R.G. (2001a). Limnology: Lake and River Ecosystems. San Diego: Academic Press, 1006 p.

56. Wetzel R.G. (2001b). Limnology. Philadelphia, 743 p.

57. Yusupova A.R. (2023a). Lithologic features and conditions of sedimentation of Pleistocene-Holocene bottom sediments of lakes Bannoe and Sabakty, Southern Urals. Cand. Geol. and Min. Sci. Diss. Kazan, 203 p. (In Russ.)

58. Yusupova A.R., Nurgalieva N.G., Kuzina D.M., Rogov A.M., Nigamatzyanova G.R. (2024а). Lithological features of Lake Bannoe sediments (Southern Urals) as an indicator of environmental and climate changes in the Holocene. LITHOSPHERE (Russia), 24(1), pp. 173–194. (In Russ.) https://doi.org/10.24930/1681–9004-2024-24-1-173-194

59. Yusupova A.R., Nurgalieva N.G., Kuzina D.M.,Kosareva L.R. (2023b). Composition characteristics of Sabakty lake lacustrine sediments (Southern Urals). Advances in current natural sciences, 7, pp. 72–81. (In Russ.) https://doi.org/10.17513/use.38074

60. Yusupova A.R., Nurgalieva N.G., Rogov A.M. (2024b). Mineral composition of lake Sabakty sediments as an indicator of paleoclimate, Southern Urals, Russia. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering, 335(8), pp. 77–90. (In Russ.) https://doi.org/10.18799/24131830/2024/8/4403

61. Zlobina O.N., Moskvin V.I., Khlystov O.M. (2011). Authigenic mineral formation in modern sediments of Lake Baikal. Geology and mineral resources of Siberia, 4(8), pp. 48–56. (In Russ.)


Review

For citations:


Yusupova A.R., Nourgalieva N.G., Kuzina D.M., Li H.Ch. The Composition of Lacustrine Sediments of Lake Kandrykul (Republic of Bashkortostan) Based on Mineralogical, Geochemical Data and Climatic Changes in the Holocene. Georesursy = Georesources. 2025;27(2):281–296. (In Russ.) https://doi.org/10.18599/grs.2025.2.21

Views: 55


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1608-5043 (Print)
ISSN 1608-5078 (Online)