Assessments of resources of gas hydrates and characteristics of hydrate reservoirs of the seas of Russia
https://doi.org/10.18599/grs.2025.3.1
Abstract
The article presents the results of a quantitative assessment of the predicted resources of subaqueous gas hydrates within the exclusive economic zone of Russia and Lake Baikal as of 01.01.2024 at three different levels – global, regional and local. The assessments were carried out using the specific density method based on numerical modeling of the gas hydrate stability zone, its mapping and identification of gas hydrates based on the interpretation of a large volume of digital seismic CDP data and the results of marine sediment sampling. A total of 203 gas hydrate accumulations were identified and taken into account in the exclusive economic zone of the Russian Federation within the Barents, Laptev, East Siberian, Bering, Okhotsk, Japan and Black seas. The total volume of gas hydrate reservoirs in the Russian seas and Lake Baikal is estimated at 520 trillion km3 , where the share of methane in gas hydrates averages just over 10% and the estimated global gas hydrate resource value is more than 147 trillion m3 . Gas hydrate reservoirs in the seas are confined to the interval of subbottom depths from the seabed to 1250 m in the stratigraphic interval from the Holocene to the Oligocene. The largest number of accumulations are confined to the Pliocene sediments. Gas resources in gas hydrate accumulations vary from 0.1 to 6830 billion m3 , corresponding in terms of resource size to traditional gas fields from very small (with reserves of less than 1 billion m3 ) to unique (with reserves of more than 300 billion m3 ).
Keywords
About the Authors
T. V. MatveevaRussian Federation
Tatiana V. Matveeva – Cand. Sci. (Geology and Mineralogy), Academic Secretary
124 Moika River Embankment, Saint Petersburg, 190121
O. V. Nazarova
Russian Federation
OlgaV. Nazarova – Lead Engineer
124 Moika River Embankment, Saint Petersburg, 190121
A. O. Chazov
Russian Federation
Artem O. Chazov – Lead Engineer
124 Moika River Embankment, Saint Petersburg, 190121
A. A. Shchur
Russian Federation
Anastasiia A. Shchur – Researcher
124 Moika River Embankment, Saint Petersburg, 190121
References
1. Barth G.A., Scholl D.W., Childs J.R. (2004). Quantifying the Methane Content of Natural Gas and Gas Hydrate Accumulations in the Deep-Water Basins of the Bering Sea. AAPG Hedberg Conference “Gas Hydrates: Energy Resource Potential and Associated Geologic Hazards”. September 12–16, Vancouver, BC, Canada, pp. 1–4.
2. Bochkarev A.V., Smirnov Yu.Yu. and Matveeva T.V. (2023). Heat Flow at the Eurasian Margin: A Case Study for Estimation of Gas Hydrate Stability. Geotectonics, 57(1), p. 136. DOI: 10.1134/s0016852123070026
3. Bogoyavlensky V. Yanchevskaya A. Kishankov A. (2021). Forecast of Distribution and Thickness of Gas Hydrate Stability Zone at the Bottom of the Caspian Sea. Energies, 14, 6019. https://doi.org/10.3390/en14196019
4. Bogoyavlensky, V.I., Yanchevskaya, A.S., Bogoyavlensky, I.V., Kishankov, A.V. (2018). Gas Hydrates in the Circum-Arctic Region aquatories. Arctic: Ecology and Economy, 3(31), pp. 42–55. (In Russ.) DOI: 10.25283/2223-4594-2018-3-42-55
5. Bohrmann G. (2011). Origin and structure of methane, gas hydrates and fluid flows in the Black Sea. Report and preliminary results of RV MARIA S. MERIAN Cruise MSM 15/2, Istanbul (Turkey) – Piraeus (Greece), 10 May – 2 June 2010. Berichte, Fachbereich Geowissenschaften, Universität Bremen, Bremen, No. 278, 130 p.
6. Bohrmann G., Ivanov M., Foucher J.-P., Spiess V., Bialas J., Greinert J., Weinrebe W., Abegg F., Aloisi G., Artemov Y., Blinova V., Drews M., Heidersdorf F., Krabbenhoft A., Klaucke I., Krastel, Leder T., Polikarpov I., Saburova M., Schmale O., Seifert R., Volkonskaya A., Zillmer M. (2003). Mud volcanoes and gas hydrates in the Black Sea: new data from Dvurechenskii and Odessa mud volcanoes. Geo-Marine Letters, 23, pp. 239–249. DOI: 10.1007/s00367-003-0157-7
7. Brod I. O. (1951) Oil and gas deposits (Formation and classification), Moscow-Leningrad: Gostoptehizdat. (In Russ.)
8. Collett T.S. (1995). Gas hydrate resources of the United States. Gautier D.L. et al. (eds), National assessment of United States oil and gas resources on CD-ROM. U.S. Geological Survey Digital Data Series 30.
9. Collett T.S., Ladd J. (2000). Detection of gas hydrate with downhole logs and assessment of gas hydrate concentrations (saturations) and gas volumes on the Blake Ridge with electrical resistivity log data. In: Paull, C.K., Matsumoto, R., Wallace, P.J., and Dillon, W.P. (еds.). Proceeding ODP, Scientific Results, 2000, 164: College Station, TX (Ocean Drilling Program).
10. De Lange G.J., Brumsack H.-J. (1998). The occurrence of gas hydrates in Eastern Mediterranean mud dome structures as indicated by pore-water composition. Gas Hydrates: Relevance to World Margin Stability and Climate Change. Geological Society, London, Special Publications. https:// doi.org/10.1144/gsl.sp.1998.137.01.14
11. Feseker T., Pape T., Wallmann K., Klapp S.A., Schmidt-Schierhorn F., Bohrmann G. (2009). The thermal structure of the Dvurechenskii mud volcano and its implications for gas hydrate stability and eruption dynamics. Marine and Petroleum Geology, 26, pp. 1812–1823. https://doi.org/10.1016/j.marpetgeo.2009.01.021
12. Frye M. (2008). Preliminary evaluation of in-place gas hydrate resources: Gulf of Mexico outer continental shelf, OCS Report MMS, 4, 94.
13. Geological Processes in the Mediterranean and Black Seas and North East Atlantic (2001). Kenyon N.H., Ivanov M.K., Akhmetzhanov A.M., Akhmanov G.G. (eds). Preliminary results of investigations during the TTR-11 cruise of RV Professor Logachev, July-September, IOC Technical Series No. 62, UNESCO 2002, 123 p.
14. Geology and Mineral Resources of the Shelves of Russia (Atlas) (2004). Moscow: Nauchnyi Mir, 108 p. (In Russ.)
15. Geomorphology of Baikal, map. Sedimentary formations. (1993). Part 2. Baikal. Atlas. (In Russ.) http://irkipedia.ru/content/geomorfologiya_baykala_karta_osadochnye_obrazovaniya_chast_2_baykal_atlas_1993_g?ysclid=lzg vjc2vaq723805276
16. Ginsburg G.D., Soloviev V.A. (1994). Submarine gas hydrates. St. Petersburg: VNIIOkeangeologiya, 199 p. (In Russ.)
17. Ginsburg, G.D., Soloviev, V.A. (1990). Geological Models of Gas Hydrate Formation. Lithology and Mineral Resources, 2, pp. 76–87. (In Russ).
18. Glumov I.F., Gulev V.L., Senin B.V., Karnaukhov S.M. (2014). Regional geology and oil and gas potential of the Black Sea deep-sea basin and adjacent shelf zones. Moscow: Nedra, 457 p. (In Russ.)
19. Glumov I.F., Malovichky Ya.P., Novikov A.A., Senin B.V. (2004). Regional geology and oil and gas potential of the Caspian Sea. Moscow: Nedra-Businesscenter LLC, 342 p. (In Russ.)
20. Hyndman R.D., Spence G.D. (1992). A seismic study of methane hydrate marine bottom simulating reflectors. Journal of Geophysical Research – Solid Earth, 97, pp. 6683–6698. https://doi.org/10.1029/92JB00234
21. Ivanov M.K., Limonov A.F., Tj. van Weering (1996). Comparative characteristics of the Black Sea and Mediterranean Ridge mud volcanoes. Marine Geology, 132, pp. 253–271. https://doi.org/10.1016/0025-3227(96)00165-X
22. Karnaukh V.N., Karp B.Ya. (2002). The Sea of Japan. The thickness of the sedimentary cover (1) and the surface of the acoustic foundation (2). Map scale 1:7,500,000. Sheet 3-24. In the Atlas of Geology and minerals of the Russian shelves. Moscow: GEOS, 425 p. (In Russ.)
23. Khlystov, O.M., De Batist, M., Minami, H., Hachikubo, A., Khabuev, A.V., Kazakov, A.V. (2022). The Position of Gas Hydrates in the Sedimentary Strata and in the Geological Structure of Lake Baikal. In: Mienert, J., Berndt, C., Tréhu, A.M., Camerlenghi, A., Liu, CS. (eds) World Atlas of Submarine Gas Hydrates in Continental Margins. Springer, Cham. https://doi.org/10.1007/978-3-030-81186-0_39
24. Klitzke P., Luzi-Helbing M., Schicks J.M. Cacace M, et al. (2016). Gas Hydrate Stability Zone of the Barents Sea and Kara Sea Region. Energy Procedia, 97, pp. 302–309. https://doi.org/10.1016/j.egypro.2016.10.005
25. Lellouche J.-M., Greiner E., Romain B.-D. et al. (2021). The Copernicus Global 1/12° oceanic and sea ice GLORYS12 reanalysis. Front. Earth Sci., (9), 698876. https://doi.org/10.3389/feart.2021.698876
26. Margulis L.S., Vedrov I.A., Borovikov I.S. (2012). Map of oil and gas potential by density of recoverable hydrocarbon resources of category C3 + D of the territory and offshore seas of the Far East. Scale 2:2 500 000. VNIGRI. (In Russ.)
27. Mathews M.A., von Huene R. (1985). Site 570 methane hydrate zone,in von Huene, R., Aubouin, J., and others, Initial Reports of the Deep Sea Drilling Project: U.S. Government Printing Office, Washington, D.C., 84, pp. 773–790.
28. Matveeva T., Mazurenko L., Kulikova M., Beketov E., Blinova V., Ivanov M., Stadnitskaya A., T.C.E. van Weering (2007). Resource potential of gas hydrate-bearing mud volcanoes in the Gulf of Cadiz. EGU General Assembly Abstracts. Vienna, Austria. EGU2007-A-07142.
29. Matveeva T., Soloviev V., Shoji H., Obzhirov A. (eds) (2005). HydroCarbon Hydrate Accumulations in the Okhotsk Sea (CHAOS Project Leg I and Leg II). Report of R/V Akademik M. A. Lavrentyev Cruise 31 and 32, VNIIOkeangeologia, St. Petersburg, 164 p.
30. Matveeva T.V, Logvina E.A, Nazarova O.V. (2024). Submarine gas hydrates: methods and results of resource assessment. Geologiya nefti I gaza, (3), pp. 81–96. (In Russ.) DOI 10.47148/0016-7894-2024-3-81-96
31. Matveeva T.V. (2018). Formation of hydrates of hydrocarbon gases in subaqueous environments. Coll. papers: World Ocean. Vol. 3: Solid minerals and gas hydrates in the ocean. Moscow: Naychny mir, pp. 586–697. (In Russ.)
32. Matveeva T.V., Mazurenko L.L., Soloviev V.A., Klerkx J., Kaulio V.V., Prasolov E.M. (2003). Gas hydrate accumulation in the subsurface sediments of Lake Baikal (Eastern Siberia). Geo-Marine Letters, 23, pp. 289–299. https://doi.org/10.1007/s00367-003-0144-z
33. Matveeva T.V., Mazurenko L.L. (2008). Gas budget in shallow-sediment gas hydrate accumulations based on the field evidences. The International Conference “Minerals of the ocean-4”. St. Peterburg, VNIIOkeangeologia, pp. 129–130.
34. Matveeva T.V., Semenova A.A., Shchur N.A., Logvina E.A., Nazarova O.V. (2017). Prospects of gas hydrate presence in the Chukchi sea. Journal of Mining Institute, 226, pp. 387–396. https://doi.org/10.25515/pmi.2017.4.387
35. Matveeva T., Suprunenko O., Krylov A. (2010). Сonventional and unconventional hydrocarbon resources of the Russian Arctic. Abstracts and Proceedings of the Geological Society of Norway. Arctic Days 2010. Tromse, Norway, May 31-June 4.
36. Matveeva, T.V., Soloviev, V.A. (2003). Gas Hydrates of the Sea of Okhotsk: patterns of formation and distribution. Rossiiskii Khimicheskii Zhurnal (Russian Chemistry Journal), 47(3), pp. 101–111 (In Russ.)
37. Matveeva T.V., Shchur N.A., Shchur A.A., Smirnov Yu.Yu. (2024). Program Complex for Calculation of Subaqueous Gas Hydrate Stability Zone Parameters «MArine GAs hydrate stability forecast» (MAGAS). Certificate of State Registration of Computer Program No. RU2024680251 Russian Federation. All-Russia Scientific Research Institute for Geology and Mineral Resources of the Ocean. (In Russ.)
38. Methane Hydrate Research and Development Act of 2000 (2000). Public Law No: 106-193.
39. Nazarov V. I. (1989). Economic problems of oil and gas resources development. Moscow, Nedra, 165 p. (In Russ.)
40. Pang XQ., Chen ZH., Jia CZ. et al. (2021). Evaluation and reunderstanding of the global natural gas hydrate resources. Pet. Sci. 18, pp. 323–338. https://doi.org/10.1007/s12182-021-00568-9
41. Perlova E.V. (2011). Unconventional gas resources (hydrate, coal and shale gases) – world experience and development prospects for Russia. Nauchno-tehnicheskij sbornik Vesti gazovoj nauki, 3(8), pp. 32–38. (In Russ).
42. Petrovskaya N.A., Gretskaya E.V. (2009). A new discovery of gas hydrates in the Bering Sea region. Proc. XVIII International Scientific Conference (School) on Marine Geology. Moscow. (In Russ).
43. Prakash A. (2017). Gas hydrate occurrences in the Andaman deep water basin. SPG, India, Jaipur 2017: 25 Years of Energizing Exploration. Conference & Exposition at JECC Jaipur, 17th-19th November, 2017.
44. Ryu B.J., Collett T.S., Riedel M., Kim G.Y., Chun J.-H., Bahk J.-J., Lee J.Y., Kim J.-H., Yoo D.-G. (2013). Scientific Results of the Second Gas Hydrate Drilling Expedition in the Ulleung Basin (UBGH2). Marine and Petroleum Geology, 47, pp. 1–20. https://doi.org/10.1016/j.marpetgeo.2013.07.007
45. Scholl D.W., Hart P.E. (1993). Velocity and amplitude structures on seismic-reflection profiles – possible massive gas-hydrate deposits and underlying gas accumulations in the Bering Sea basin. In Howell, D.G., ed., The Future of Energy Gases: U.S. Geological Survey Prof. Paper 1570, pp. 331–351.
46. Senger K., Bünz S., Mienert J. (2010). First-Order Estimation of In-Place Gas Resources at the Nyegga Gas Hydrate Prospect, Norwegian Sea. Energies, 3(12), pp. 2001–2026. https://doi.org/10.3390/en3122001
47. Shchur A.A., Matveeva T.V., Bochkarev A.V. (2021). Geographic Information System (GIS) for the forecast mapping of hydratebearing water areas. Geologiya nefti i gaza, (3). (In Russ) DOI: 10.31087/0016-7894-2021-3-0-0
48. Shchur A.A., Matveeva T.V., Shchur N.A., Akhmanov G.G., Solovyova M.A. (2024). Methane in the gas hydrate of Lake Baikal Monte Carlo assessment. Gas hydrates – energy of the future. Proc. First Russian Gas Hydrate Conference (RCGH I). St. Petersburg: VNIIOkeangeologiya, pp. 376–371. (In Russ) DOI 10.24412/cl-37274-2024-1-366-371
49. Shchur N.A., Shchur A.A., Matveeva T.V., Smirnov Yu.Yu. (2024). Program for calculating the stability conditions of gas hydrates in marine sediments “VNIIO_GHSZ”. Certificate of state registration of Computer Program No. RU2024680173 Russian Federation. All-Russia Scientific Research Institute for Geology and Mineral Resources of the Ocean. (In Russ.)
50. Shoji H., Soloviev V., Matveeva T., Mazurenko L., Minami H., Hachikubo A., Sakagami H., Hyakutake K., Kaulio V., Gladysch V., Logvina E., Obzhirov A., Baranov B., Khlystov O., Biebow N., Poort J., Jin Y., Kim T. (2005). Hydrate-bearing structures in the Sea of Okhotsk. Eos, 86(2), pp. 13–24. http://dx.doi.org/10.1029/2005EO020001
51. Skorobogatov V.A., Perlova E.V. (2014). Potential unconventional gas resources of the Russian interior (land and shelf) and prospects for their industrial development until 2050. Geologiya nefti i gaza, (5), pp. 48–57. (In Russ).
52. Sloan E.D. (1998). Clathrate Hydrates of Natural Gases. New-York, Dekker.
53. Smirnov Yu.Yu., Matveeva T.V., Chazov A.O. (2025). Cryogenic gas hydrates on the Arctic shelves: forecast features and resource assessments. Georesursy = Georesources, 27(3). https://doi.org/10.18599/grs.2025.3.25
54. Soloviev V.A. (2002). Global estimation of gas content in submarine gas hydrate accumulations. Russian Geology and Geophysics, 43(7), pp. 648–661.
55. Soloviev V.A., Matveeva T.V., Kaulio V.V., Mazurenko L.L. (2000). Gas Hydrate Accumulations and Global Estimation of Methane Content in Submarine Gas Hydrates. 2000 Western Pacific Geophysics Meeting. June 27-30, Tokyo, Japan. Published as a supplement to Eos, Transactions American Geophysical Union, American Geophysical Union, Washington, DC, USA, 81(22), pp. 67–68.
56. Suess E., von Huene R., et al. (1988). Proc. ODP, Init.Repts, 112. College Station, TX (Ocean Drilling Program)
57. Taladay K., Boston B., Moore G. (2017). Gas-In-Place Estimate for Potential Gas Hydrate Concentrated Zone in the Kumano Basin, Nankai Trough Forearc, Japan. Energies, 20(10). https://doi.org/10.3390/en10101552
58. The International Tectonic map of the Caspian Sea and its borders (2001). Ed. Khain V.E., Bogdanov N.A. Institute of Lithosphere of Marginal and Inland Seas of the Russian Academy of Sciences, Moscow. (In Russ.)
59. The Maritime Doctrine of the Russian Federation (2022). Approved by the Decree of the President of the Russian Federation dated July 31, 2022 No. 512. (In Russ.)
60. Trotsyuk V.Ya. (1982). Forecast of oil and gas potential of water areas. Moscow: Nedra, 201 p. (In Russ).
61. Wagner-Friedrichs M., Bulgay E., Keil H., Krastel S., Bohrmann G., Ivanov M., Spiess V. (2007). Gas seepage and gas/fluid migration associated with the canyon-ridge system offshore Batumi (Georgia, south-eastern Black Sea) inferred from multichannel seismic data. Chapter 4 from the Dissertation, Bremen.
62. Walsh M.R., Hancock S.H., Wilson S.J., Patil S.L., Moridis G.J., Boswell R., Collett T.S., Koh C.A., Sloan E.D. (2009). Preliminary report on the commercial viability of gas production from natural gas hydrates. Energy Economics, 31(5), pp. 815–823. https://doi.org/10.1016/j.eneco.2009.03.006
Review
For citations:
Matveeva T.V., Nazarova O.V., Chazov A.O., Shchur A.A. Assessments of resources of gas hydrates and characteristics of hydrate reservoirs of the seas of Russia. Georesursy = Georesources. 2025;27(3):5-24. (In Russ.) https://doi.org/10.18599/grs.2025.3.1