Preview

Georesources

Advanced search

Probabilistic assessment of spatial distribution of hydrate methane resources within the economic zone of the Russian Federation of the Black Sea

https://doi.org/10.18599/grs.2025.3.4

Abstract

The results of gas hydrate resources assessment within the Black Sea exclusive economic zone of the Russian Federation by probabilistic-statistical method using the original OHRA (“Oceanic gas Hydrate Resource Assessment”) software are presented. The results of gas hydrate resources assessment in the Black Sea exclusive economic zone of the Russian Federation by probabilistic-statistical method using the original OHRA software are presented. The quantitative assessment performed with data binding to the calculated grid; the specific density of methane resources in gas hydrates is estimated. For the geothermal data account a map of the geothermal gradient of the Black Sea has been compiled. The amount of methane in hydrates is estimated as much as 361.9 trillion with a probability of 5%, 120.5 trillion with a probability of 50%, 36.7 trillion m3 with a probability of 95%. It has been established that temperature and pressure are the parameters that have the greatest impact on the resource assessment of gas hydrates in the study area. At the sea depths of more than 1,500 m, the resources of P95 are influenced by the mass of methane produced and migrated to the gas hydrate stability zone. The average specific density values of hydrated methane are estimated to be (probability 50%) 1.2 billion, probability 95% – 0.36 billion, probability 5% – 3.59 billion m3 /km2 . The most promising in relation to gas hydrates areas within the Russian exclusive economic zone are the West Black Sea Depression, Sorokin Trough, Tuapse Trough, the Andrusov Ridge, the northern part of the East Black Sea Depression, the northern and the southern parts of the Shatsky Ridge.

About the Authors

I. G. Chernova
All-Russia Research Institute for Geology and Mineral Resourсes of the World Ocean; Saint Petersburg State University
Russian Federation

Irina G. Chernova – Lead Engineer

124 Moika River Embankment, Saint Petersburg, 190121



T. V. Matveeva
All-Russia Research Institute for Geology and Mineral Resourсes of the World Ocean
Russian Federation

Tatiana V. Matveeva – Cand. Sci. (Geology and Mineralogy), Academic Secretary

124 Moika River Embankment, Saint Petersburg, 190121



A. O. Chazov
All-Russia Research Institute for Geology and Mineral Resourсes of the World Ocean
Russian Federation

Artem O. Chazov – Lead Engineer

124 Moika River Embankment, Saint Petersburg, 190121



Yu. Yu. Smirnov
All-Russia Research Institute for Geology and Mineral Resourсes of the World Ocean; Russian State Hydrometeorological University
Russian Federation

Yury Yu. Smirnov – Lead Engineer; Postgraduate Student

124 Moika River Embankment, Saint Petersburg, 190121



References

1. Afonasenkov A.P., Nikishin A.M., Obukhov A.N. (2007). Geological structure and hydrocarbon potential of the East Black Sea region. Moscow: Nauchnyy mir, 172 p. (In Russ.)

2. Anders D.F., Claypool G.E., Lubeck C.M., Patterson J.M. (1978). Preliminary results, organic geochemical investigation of Black Sea sediments: deep sea drilling project. Leg 42B. Initial Reports of the Deep-Sea Drilling Project. https://doi.org/10.2973/dsdp.proc.42-2.137.1978

3. Boswell R., Shipp C., Reichel T., Shelander D., Saeki T., Frye M., Shedd W., Collett T.S., McConnell D.R. (2016). Prospecting for marine gas hydrate resources. Interpretation, 4(1), pp. SA13–SA24. doi: 10.1190/INT-2015-0036.1

4. Byakov Yu.A., Krugliakova R.P. (2001). Gas hydrates of the sedimentary strata of the Black Sea are the hydrocarbon raw materials of the future. Razvedka i okhrana nedr, 8, pp. 14–19. (In Russ.)

5. Calvert S.E., Batchelor C.H. (1978). Major and minor element geochemistry of sediments from Hole 379A, Leg 42B, Deep Sea Drilling Project. Initial Reports of the Deep Sea Drilling Project. U.S. Government Printing Office, Washington, pp. 527–541. https://doi.org/10.2973/dsdp.proc.42-2.116.1978

6. Efremova A.G., Zhizhchenko B.P. (1974). Detection of gas crystal hydrates in sediments of modern water areas. DAN SSSR, 5(214), pp. 1179- 1181. (In Russ.)

7. Fuchs S., Norden B. (2021). The Global Heat Flow Database: Release 2021. GFZ Data Services. International Heat Flow Commission. https://doi.org/10.5880/fidgeo.2021.014

8. Gaynanov V.G., Bouriak S.V., Ivanov, M.K. (1998). Seismic evidence for gas accumulation related to the area of mud volcanism in the deep Black Sea. Geo-Marine Letters, 18, pp. 139–145. https://doi.org/10.1007/s003670050061

9. Gerasimov M.E., Bondarchuk G.K., Yudin V.V., Beletsky S.V. (2008). Geodynamics and tectonic zoning of the Azov-Black Sea region. Geodynamics, tectonics and fluid dynamics of oil and gas regions of Ukraine. Coll. papers: VII International Conference “Crimea-2007”, pp. 115–151. (In Russ.)

10. Ginsburg G.D., Kremlev A.N., Grigoriev M.N., Larkin G.V., Pavlenkin A.D., Saltykova N.A. (1990). Filterogenic gas hydrates in the Black Sea (21st voyage of the research vessel “Evpatoria”). Geologiya i geofizika, 3, pp. 10–20. (In Russ.)

11. Ginsburg G.D., Soloviev V.A. (1994). Submarine gas hydrates. St. Petersburg: VNIIOkeangeologiya, 199 p. (In Russ.)

12. Glumov I.F., Gulev V.L., Senin B.V., Karnaukhov S.M. (2014). Regional geology and oil and gas potential of the Black Sea deep-sea basin and adjacent shelf zones. Moscow: Nedra , 457 p. (In Russ.)

13. Grushevskaya O.V., Navrotsky A.O., Pevzner S.L. (2022). Clarification of the geological structure and oil and gas potential of the junction zone of the Scythian plate and the Cimmerian-Alpine folded-orogenic structures. State assignment No. 049-00012-20-01 of 01/28/2020, No. 049-00003-21- 00 of 01/12/2021, No. 049-00014-22-01 dated 14.01.2022. Moscow: FGBU “VNIGNI”. “Rosgeolfond” No. 544560. (In Russ.)

14. Hyndman R.D., Spence G.D. (1992). A seismic study of methane hydrate marine bottom simulating reflectors. Journal of Geophysical Research: Solid Earth, 97(B5), pp. 6683–6698. https://doi.org/10.1029/92JB00234

15. Ivanov M.K., Limonov A.F., Woodside J.M. (1998). Extensive deep fluid flux through the sea floor on the Crimean continental margin (Black Sea). Gas Hydrates: Relevance to World Margin Stability and Climate Change. Geological Society. London. Special Publications, 137, pp. 195–213. https://doi.org/10.1144/GSL.SP.1998.137.01.16

16. Khisamov R.S., Safarov A.F., Kalimullin A.M., Dryagalkina A.A. (2018). Probabilistic-statistical estimation of reserves and resources according to the international classification SPE-PRMS. Georesursy = Georesources, 20(3), pp. 158–164. https://doi.org/10.18599/grs.2018.3.158-164

17. Konyukhov A.I., Ivanov M.K., Kulnitsky L.M. (1990). On mud volcanoes and gas hydrates in the deep-water areas of the Black Sea. Lithology and mineral resources, 3, pp. 12–23.

18. Korsakov O.D., Byakov Yu.A., Stupak S.N. (1989). Gas hydrates of the Black Sea depression. Sov. geology, 12, pp. 3–9. (In Russ.)

19. Korsakov O.D., Byakov Yu.A., Stupak S.N. (1989). Gas hydrates of the Black Sea depression. Sov. geology, 12, pp. 3-9. (In Russ.)

20. Kruglyakova R.P., Kruglyakova M.V., Shevtsova N.T. (2009). Geological and geochemical characteristics of natural manifestations of hydrocarbons in the Black Sea. Geologiya i poleznye iskopaemye Mirovogo okeana, 1, pp. 37–51. (In Russ.)

21. Kruglyakova R.P., Zubova M.V., Koposova T.A. (1990). Geochemical characteristics of gas hydrates of the Black Sea. 9th All-Union. School of Marine Geology, 3, p. 146. (In Russ.)

22. Lellouche J.M., Greiner E., Romain B.D. et al. (2021). The Copernicus Global 1/12° Oceanic and Sea Ice GLORYS12 Reanalysis. Frontiers in Earth Science, 9. doi: 10.3389/feart.2021.698876

23. Leonchik M.I., Senin B.V., Khortov A.V. (2015). Prospects for gas content in the Cenozoic Black Sea. Vesti gazovoy nauki, 2(22), pp. 54–62. (In Russ.)

24. Ludmann T., Wong H.K., Konerding P., Zillmer M., Petersen J., Fluh E. (2004). Heat flow and quantity of methane deduced from a gas hydrate field in the vicinity of the Dnieper Canyon, northwestern Black Sea. Geo-Mar Lett, 24, pp. 182–193. doi: 10.1007/s00367-004-0169-y

25. Matveeva T. V., Shchur A. A., Chazov A. O. (2023). Prospects for gas hydrate content in the Barents Sea. Proc. XII International Scientific and Practical Conference “Marine Research and Education (MARESEDU)-2023”, pp. 35–38. (In Russ.)

26. Matveeva T.V. (2018). Formation of hydrates of hydrocarbon gases in subaqueous environments. World Ocean. Solid minerals and gas hydrates in the ocean. Moscow: Nauchnyy mir, 3, pp. 586–697. (In Russ.)

27. Matveeva T.V. (2024с). Report on thematic and experimental and methodological work related to geological study of the subsoil. State assignment of the Federal Agency for Subsoil Use No. 049-00004-24-00 “VNIIOkeangeologiya”. St. Petersburg. (In Russ.)

28. Matveeva T.V., Logvina E.A., Nazarova O.V. (2024a). Gas hydrates of water areas: methods and results of resource assessments. Geologiya nefti i gaza, 3, pp. 81–96. (In Russ.)

29. Matveeva T.V., Shchur N.A., Shchur A.A., Smirnov Yu.Yu. (2024b). Software package for assessing the amount of gas in gas hydrates using the probabilistic-statistical method “Oceanic gas Hydrate Resources Assessment” (OHRA). Rospatent. Certificate No. 2024668338 dated 15.08.2024. (In Russ.)

30. Mazurenko L.L., Soloviev V.A., Ivanov M.K., Stadnitskaya A. (2002). Mud volcano gas hydrates of the Black Sea. Proc. International Conference: Minerals of the Ocean. April 20-23. St.Petersburg, pp.146–147.

31. Meisner L.B., Tugolesov D.A. (2004). Black Sea region. Structuraltectonic scheme. Map scale 1:5 000 000. In the atlas: Geology and mineral resources of the shelves of Russia. Moscow: GIN RAS. (In Russ.)

32. Merey S., Sinayuc C. (2016). Investigation of gas hydrate potential of the Black Sea and modelling of gas production from a hypothetical Class 1 methane hydrate reservoir in the Black Sea conditions. Journal of Natural Gas Science and Engineering, 29, pp. 66–79. doi: 10.1016/j.jngse.2015.12.048.

33. Morosanu I. (2012). The hydrocarbon potential of the Romanian Black Sea continental plateau. Romanian Journal of Earth Sciences, 2(86), pp. 91–109.

34. Preliminary Evaluation of In-Place Gas Hydrate Resources: Gulf of Mexico Outer Continental Shelf. (2008). U.S. Department of the Interior Minerals Management Service Resource Evaluation Division.

35. Proshlyakov S.L., Kuzmin D.A., Shikhanov S.E., Novikov P.P., Erukh D.V., Egorova E.S., Posysoev A.A. (2018). Report on the results of drilling the prospecting and appraisal well Maria-1 within the license area “WestChernomorskaya area”. Krasnodar. “Rosgeolfond” No. 531886. (In Russ.)

36. Shnyukov E.F. (2005). Methane gas hydrates in the Black Sea. Geologiya i poleznye iskopaemye Mirovogo okeana, 2, pp. 41–52. (In Russ.)

37. Shnyukov E.F., Mitin L.I., Kleshchenko S.A. (1993). Zone of acoustic anomalies in the Black Sea near Sevastopol. Geologicheskiy zhurnal, 3, pp. 62–67. (In Russ.)

38. Suslova A.A., Stupakova A.V. (2020). Oil and gas basins of the Russian shelf. Neftegaz.RU. https://magazine.neftegaz.ru/articles/geologorazvedka/524204-neftegazonosnye-basseyny-shelfa-rossii/?clear_cache=Y

39. Vassilev A., Dimitrov L. (2002). Assessment of the spatial distribution and reserves of gas hydrates in the Black Sea. Russian Geology and Geophysics, 7(43), pp. 672–684. (In Russ.)

40. Zillmer M., Flueh E.R., Petersen J. (2005) Seismic investigation of a bottom simulating reflector and quantification of gas hydrate in the Black Sea, Geophysical Journal International, 161(3), pp. 662–678. doi: 10.1111/j.1365-246X.2005.02635.x


Review

For citations:


Chernova I.G., Matveeva T.V., Chazov A.O., Smirnov Yu.Yu. Probabilistic assessment of spatial distribution of hydrate methane resources within the economic zone of the Russian Federation of the Black Sea. Georesursy = Georesources. 2025;27(3):51-63. (In Russ.) https://doi.org/10.18599/grs.2025.3.4

Views: 16


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1608-5043 (Print)
ISSN 1608-5078 (Online)