Preview

Georesources

Advanced search

Cryogenic gas hydrates on the Arctic shelves: forecast features and resource assessments

https://doi.org/10.18599/grs.2025.3.5

Abstract

The study is dedicated to the features of forecasting and quantitative assessment of methane resources in subaqueous cryogenic gas hydrates on the Russian Arctic shelf. The work is based on numerical modeling of submarine permafrost and the thermal regime of marine sediments. As a result of the mathematical modeling, equilibrium curves of hydrate formation with variable seawater salinity were constructed. These curves facilitated the determination of the spatial boundaries of cryogenic gas hydrate stability zones. In regions with predicted cryogenic gas hydrate stability zones, potentially hydrate-bearing accumulations were delineated based on Common Depth Point (CDP) seismic data. The amount of methane in four forecasted sub-permafrost gas hydrate accumulations on the Laptev Sea shelf was estimated. The identified accumulations are projected to contain approximately 0.1 trillion cubic meters of methane in hydrate form. According to the regional-scale assessments, up to 9.24 trillion cubic meters of methane, or about 0.3% of the global gas-in-place assessments, may be accumulated on the Russian Arctic shelf.

About the Authors

Yu. Yu. Smirnov
All-Russia Research Institute for Geology and Mineral Resourses of the World Ocean; Russian State Hydrometeorological University
Russian Federation

Yury Yu. Smirnov – Lead Engineer

124 Moika River Embankment, Saint Petersburg, 190121



T. V. Matveeva
All-Russia Research Institute for Geology and Mineral Resourses of the World Ocean
Russian Federation

Tatiana V. Matveeva – Cand. Sci. (Geology and Mineralogy), Academic Secretary

124 Moika River Embankment, Saint Petersburg, 190121



A. O. Chazov
All-Russia Research Institute for Geology and Mineral Resourses of the World Ocean
Russian Federation

Artem O. Chazov – Lead Engineer

124 Moika River Embankment, Saint Petersburg, 190121



References

1. Anderson B.J., Wilder J.W., Kurihara M., White M.D., Moridis G.J., Wilson S.J., Pooladi-Darvish M., Masuda Y., Collett T.S., Hunter R.B., Narita H., Rose K., Boswell R. (2008). Analysis of modular dynamic formation test results from the Mount Elbert 01 stratigraphic test well, Milne Point Unit, North Slope Alaska. Proceedings of the 6th International Conference on Gas Hydrates (ICGH 2008). Vancouver, 13 p.

2. Angelopoulos M., Overduin P.P., Frederieke M. et al. (2020) Recent advances in the study of Arctic submarine permafrost. Permafrost and Periglacial Processes. Transactions of the International Permafrost Association, 31(3), рр. 341–457. https://doi.org/10.1002/ppp.2061

3. Chuvilin E., Bukhanov B., Grebenkin S. et al. (2021). Thermal properties of sediments in the East Siberian Arctic Seas: A case study in the BuorKhaya Bay. Marine and Petroleum Geology, 123, p. 104672. https://doi.org/10.1016/j.marpetgeo.2020.104672

4. Collett T.S. (1993). Natural gas hydrates of the Prudhoe Bay and Kuparuk River area, North Slope, Alaska. AAPG Bulletin, 77(5), pp. 793–812. https://doi.org/10.1306/BDFF8D62-1718-11D7-8645000102C1865D

5. Collett T.S. (1995). Gas hydrate resources of the United States. In Gautier, D.L., Dolton, G.L., Takahashi, K.I., and Varnes, K.L., eds., National assessment of United States oil and gas resources on CD-ROM: U.S. Geological Survey Digital Data Series 30.

6. Collett T.S. (2002). Energy resource potential of natural gas hydrates. AAPG Bulletin, 86(11), pp. 1971–1992. https://doi.org/10.1306/61EEDDD2-173E-11D7-8645000102C1865D

7. Collett T.S., Agena W., Lee M., Zyrianova M.V., Bird Kenneth, Charpentier T.C., Houseknecht David, Klett T.R., Pollastro R.M., Schenk C.J. (2008). Assessment of Gas Hydrate Resources on the North Slope, Alaska. U.S. Geological Survey Fact Sheet, 2008-3073, pp. 1–4. https://doi.org/10.3133/fs20083073

8. Collett T.S., Lewis K.A., Zyrianova M.V., Haines S.S., Schenk C.J., Mercier T.J., Brownfield M.E., Gaswirth S.B., Marra K.R., Leathers-Miller H.M., Pitman J.K., Tennyson M.E., Woodall C.A., Houseknecht D.W. (2019). Assessment of undiscovered gas hydrate resources in the North Slope of Alaska, 2018. U.S. Geological Survey Fact Sheet, 2019–3037, pp. 1–4. https://doi.org/10.3133/fs20193037

9. Fütterer D.K., Niessen F. (2004). Profile of sediment echo sounding during POLARSTERN cruise ARK-IX/4 with links to ParaSound data files [dataset]. Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, PANGAEA. https://doi.org/10.1594/PANGAEA.206530

10. Gavrilov A., Pavlov V., Fridenberg A., Boldyrev M., Khilimonyuk V., Pizhankova E.I., Buldovich S., Kosevich N., Alyautdinov A.R., Ogienko M., Roslyakov A., Cherbunina M., Ospennikov E. (2020). The current state and 125 kyr history of permafrost on the Kara Sea shelf: modeling constraints. The Cryosphere, 14(6), pp. 1857–1873. https://doi.org/10.5194/tc-14-1857-2020

11. Ginzburg G.D., Soloviev V.A. (1994). Submarine gas hydrates. Saint Petersburg: VNIIOceangeologiya, 199 p. (In Russ.)

12. Hinz K., Delisle G., Block M. (1998). Seismic evidence for the vertical extent of submarine permafrost in the Laptev Sea, Siberia. Proc. 7th. International Conference on Permafrost, Yellowknife, Canada, pp. 453–458.

13. Kassens H., Bauch H., Dmitrienko I., Drachev S., Grikurov G., Thiede J., Tsching K. (2001). Transdrift VIII: Drilling the Laptev Sea in 2000. The Nansen Icebreaker (A newsletter from the Nansen Arctic Drilling Program), 12(1), pp. 8–9.

14. Kneier F. (2018). Subsea permafrost in the Laptev Sea: Influences on degradation dynamics, state and distribution. Doctoral dissertation, University of Potsdam, 221 p.

15. Makogon, Y.F., Holditch, S.A., Makogon, T.Y. (2007). Natural gas-hydrates – A potential energy source for the 21st Century. Journal of Petroleum Science and Engineering, 56(1), pp. 14–31. https://doi.org/10.1016/j.petrol.2005.10.009

16. Malakhova V.V., Eliseev A.V. (2020). Influence of Salt Diffusion on the State and Distribution of Permafrost Rocks and Methane Hydrate Stability Zone of the Laptev Sea Shelf. Ice and Snow, 60(4), pp. 533–546. (In Russ.)

17. Matveeva T.V., Chazov A.O., Smirnov Y.Y. (2023). The Geological Characteristics of a Subpermafrost Gas Hydrate Reservoir on the Taimyr Shelf of the Kara Sea (Eastern Arctic). Geotecton., 57 (Suppl 1), pp. S153–S173. https://doi.org/10.1134/S0016852123070099

18. Matveeva T.V., Logvina E.A. (2012). Gas hydrates of Arctic waters: risk factor or potential mineral resource? Rossijskie polar’nye issledovanija, 2, pp. 19–21. (In Russ.)

19. Matveeva T.V., Logvina E.A., Nazarova O.V. (2024). Gas hydrates of water areas: methods and results of resource assessments. Geologiya nefti i gaza, 3, pp. 81–96. (In Russ.) https://doi.org/10.47148/0016-7894-2024-3-81-96

20. Matveeva T.V., Shchur N.A., Shchur A.A., Smirnov Y.Y. (2024). Program Complex for Calculation of Subaqueous Gas Hydrate Stability Zone Parameters «MArine GAs hydrate stability forecast» (MAGAS). Russian Agency for Patents and Trademarks. Sertificate No. 2024680266. (In Russ.)

21. Moridis G.J. (2003). Numerical studies of gas production from methane hydrates. Society of Petroleum Engineers Journ., 32(8), pp. 359–370. https://doi.org/10.2118/87330-PA

22. Niessen F. (2004). Profile of sediment echo sounding during cruise ARKXI/1 with links to ParaSound data files, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, PANGAEA. https://doi.org/10.1594/PANGAEA.206531

23. Osadetz K.G., Chen Z. (2010). A re-evaluation of Beaufort SeaMackenzie Delta basin gas hydrate resource potential: petroleum system approaches to non-conventional gas resource appraisal and geologicallysourced methane flux. Bulletin of Canadian Petroleum Geology, 58(1), pp. 56–71. https://doi.org/10.2113/gscpgbull.58.1.56

24. Osterkamp, T. E. (2001). Sub-sea permafrost. Elements of physical oceanography. A derivative of the encyclopedia of ocean sciences, 2, pp. 2902-2912. https://doi.org/10.1006/rwos.2001.0008

25. Overduin P.P., Schneider von Deimling T., Miesner F., Grigoriev, M.N., Ruppel C.D., Vasiliev A., Lantuit H., Juhls B., Westermann S. (2019). Submarine permafrost map in the Arctic modeled using 1-D transient heat flux (SuPerMAP). J. Geophys. Res.: Oceans, 124(6), pp. 3490–3507. https://doi.org/10.1029/2018JC014675

26. Pang X. (2023). Evaluation of the Global Potential Resource of the Natural Gas Hydrate. In: Quantitative Evaluation of the Whole Petroleum System. Singapore: Springer, pp. 413–454. https://doi.org/10.1007/978-981-99-0325-2_12

27. Perlova, E.V. (2019). Priority objects of hydrate gas resources development for the development of the mineral resource base of gas production in Russia. Nauchno-tekhnicheskiy sbornik Vesti gazovoy nauki,4(41), pp. 164–168. (In Russ.)

28. Poselov V.A., Zholondz S.M., Trukhalev A.I., Kosko M.K., Poselova L.G., Butsenko V.V., Pavlenkin A.D., Verba V.V., Kim B.I. (2012). Map of the sedimentary cover thickness of the Arctic Ocean. Geological and geophysical characteristics of the Arctic region lithosphere. Trudy VNIIOkeangeologiya, 223(8), pp. 8–14. (In Russ.)

29. Rachold V., Bolshiyanov D.Y., Grigoriev M.N., Hubberten H.W., Junker R., Kunitsky V.V., Merker F., Schneider W. (2007). Nearshore Arctic subsea permafrost in transition. Eos, Transactions American Geophysical Union, 88(13), pp. 149–150. https://doi.org/10.1029/2007EO130001

30. Rekant P., Bauch H.A., Schwenk T., Portnov A.D., Gusev E.A., Spiess V., Cherkashov G., Kassens H. (2015). Evolution of subsea permafrost landscapes in Arctic Siberia since the Late Pleistocene: a synoptic insight from acoustic data of the Laptev Sea. Arktos, 1, pp. 1–15. https://doi.org/10.1007/s41063-015-0011-y

31. Rokos S.I., Dlugach A.G., Loktev A.S., Kostin D.A., Kulikov S.N. (2009). Multiyear frozen rocks of the Pechora and Kara Seas shelf: genesis, composition, conditions of distribution and occurrence. Inzh. izyskaniya, 10, pp. 38–41. (In Russ.)

32. Romanovsky N.N., Gavrilov A.V., Tumskoy V.E., Kholodov A.L. (2003). Cryolithozone of the East Siberian Arctic shelf. Moscow University Bulletin. Series 4. Geology, 4, pp. 51–56. (In Russ.)

33. Ruppel C.D. (2015). Permafrost-Associated Gas Hydrate: Is It Really Approximately 1 % of the Global System? Journal of Chemical & Engineering Data, 60(2), pp. 429–436. https://doi.org/10.1021/je500770m

34. Ruppel C.D., Kessler J.D. (2017). The interaction of climate change and methane hydrates. Rev. Geophys., 55(1), pp. 126–168. https://doi.org/10.1002/2016RG000534

35. Sloan E.D. (1998). Gas hydrates: review of physical/chemical properties. Energy & Fuels, 12(2), pp. 191–196. https://doi.org/10.1021/ef970164+

36. Sloan E.D., Koh C.A. (2007). Clathrate Hydrates of Natural Gases (3rd ed.). Boca Raton: CRC Press, 758 p. https://doi.org/10.1201/9781420008494

37. Smirnov Yu.Yu., Matveeva T.V., Shchur N.A., Shchur A.A., Bochkarev A.V. (2024a). Numerical modelling of submarine permafrost on the Eurasian Arctic shelf considering modern climate zonality. The Earth’s Cryosphere, 28(5), pp. 38–59. (In Russ.) https://doi.org/10.15372/KZ20240504

38. Smirnov Yu.Yu., Shchur N.A., Matveeva T.V., Shchur A.A. (2024b). Program complex for calculating the parameters of the stability zone of cryogenic gas hydrates «PErmafrost GAs hydrate stability forecast» (PEGAS). Russian Agency for Patents and Trademarks. Sertificate No. 2024680251. (In Russ.)


Review

For citations:


Smirnov Yu.Yu., Matveeva T.V., Chazov A.O. Cryogenic gas hydrates on the Arctic shelves: forecast features and resource assessments. Georesursy = Georesources. 2025;27(3):64-76. (In Russ.) https://doi.org/10.18599/grs.2025.3.5

Views: 17


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1608-5043 (Print)
ISSN 1608-5078 (Online)