Applicability of natural geological objects for storage, disposal and utilization of carbon dioxide (review)
https://doi.org/10.18599/grs.2023.2.2
Abstract
In the context of the current trend, today we are focused on low-carbon energy, so the question of carbon dioxide utilization is very important. Underground storage of carbon dioxide is an important part of carbon capture and storage (CCS) projects and a key technology to reduce emissions of carbon dioxide to the atmosphere. There are currently many carbon dioxide capture projects around the world, but each project has its own specifics. The article discusses the features of carbon dioxide capture in natural geological reservoirs and the principles of carbon dioxide retention in them. An example of some Carbon Capture in a natural geological reservoirs projects are given. The choice of a natural reservoir, the development of a technology for its identification and justification criteria are of key importance for the environmentally sustainable capture of carbon dioxide.
About the Authors
A. V. KorzunRussian Federation
Anna V. Korzun – PhD (Geology and Mineralogy), Associate Professor of the Hydrogeology Department
1, Leninskie gory, Moscow, 119234
A. V. Stoupakova
Russian Federation
Antonina V. Stoupakova – DSc (Geology and Mineralogy), Professor, Head of the Petroleum Geology Department, Head of the Petroleum Research Institute
1, Leninskie gory, Moscow, 119234
N. A. Kharitonova
Russian Federation
Natalia A. Kharitonova – Dsc (Geology and Mineralogy), Proffesor of the Hydrogeology Department
1, Leninskie gory, Moscow, 119234
A. V. Aseeva
Russian Federation
Anna V. Aseeva – PhD (Geology and Mineralogy), Researcher of the Laboratory of Genetic Mineralogy and Petrology
159, 100 let Vladivostoku ave, Vladivostok, 690022
K. O. Osipov
Russian Federation
Konstantin O. Osipov – Researcher of the Petroleum Geology Department
1, Leninskie gory, Moscow, 119234
N. V. Pronina
Russian Federation
Natalia V. Pronina – PhD (Geology and Mineralogy), Associate Professor of the Petroleum Geology Department
1, Leninskie gory, Moscow, 119234
E. Yu. Makarova
Russian Federation
Elena Yu. Makarova – PhD (Geology and Mineralogy), Associate Professor of the Petroleum Geology Department
1, Leninskie gory, Moscow, 119234
A. P. Vaytekhovich
Russian Federation
Anastasia Р. Vaytekhovich – Graduate Student of the Petroleum Geology Department
1, Leninskie gory, Moscow, 119234
A. Yu. Lopatin
Russian Federation
Alexey Yu. Lopatin – PhD (Engineering), Expert in field development, Center of National Intellectual Reserve
27, bld.1, Lomonosovsky Prospekt, Moscow, 119192
M. Yu. Karpushin
Russian Federation
Mikhail Yu. Karpushin – Leading Specialist, Petroleum Geology Department
1, Leninskiye Gory, Moscow, 119234
Yu. D. Peregudov
Russian Federation
Yury D. Peregudov – Master Student of the Hydrogeology Department
1, Leninskiye Gory, Moscow, 119234
R. S. Sautkin
Russian Federation
Roman S. Sautkin – PhD (Geology and Mineralogy), Senior Researcher, Petroleum Geology Department, Faculty of Geology
1, Leninskiye Gory, Moscow, 119234
M. A. Bolshakova
Russian Federation
Maria A. Bolshakova – PhD (Geology and Mineralogy), Leading Researcher, Petroleum Geology Department
1, Leninskiye Gory, Moscow, 119234
K. A. Sitar
Russian Federation
Ksenia A. Sitar – PhD (Geology and Mineralogy), Senior Researcher, Petroleum Geology Department
1, Leninskiye Gory, Moscow, 119234
A. S. Redkin
Russian Federation
Alexandr S. Redkin – Graduate Student of the Hydrogeology Department
1, Leninskiye Gory, Moscow, 119234
References
1. Alfredsson H.A., Hardarson B.S., Franzson H., Gislason S.R. (2008). CO2 sequestration in basaltic rock at the Hellisheidi site in SW Iceland: Stratigraphy and chemical composition of the rocks at the injection site. Mineralogical Magazine, 72(1), pp. 1–5. https://doi.org/10.1180/minmag.2008.072.1.1
2. Bachu S., Bonijoly D., Bradshaw J., Burruss R., Holloway S., Christensen N.P., Mathiassen O.M. (2007). CO2 storage capacity estimation: Methodology and gaps. International Journal of Greenhouse Gas Control, 1(4), pp. 430–443. http://dx.doi.org/10.1016/S1750-5836(07)00086-2
3. Baklid A., Korbol R., Owren G. (1996). Sleipner Vest CO2 disposal, CO2 injection into a shallow underground aquifer. SPE Annual Technical Conference and Exhibition. SPE-36600-MS. https://doi.org/10.2118/36600-MS
4. Brouard B., Bérest P. (2019). Over-pressured salt solution mining caverns and leakage mechanisms. Phase 2: Cavern-Scale Report. 151 p.
5. Caglayan D.G., Weber N., Heinrichs H.U., Linßen, Robinius M., Kukla P.A., Stolten D. (2020). Technical potential of salt caverns for hydrogen storage in Europe. International Journal of Hydrogen Energy, 45(11), pp. 6793–6805. https://doi.org/10.1016/j.ijhydene.2019.12.161
6. Da Costa A.M., da Costa P.V.M., Udebhulu O.D., Azevedo R.C., Ebecken N.F.F., Miranda, A.C.O., de Eston S. M., de Tomi G., Meneghini J. R., Nishimoto K., Ruggiere F., Malta E., Fernandes É.R., Brandão C.M., Breda A. (2019). Potential of storing gas with high CO2 content in salt caverns built in ultra-deep water in Brazil. Greenhouse Gases: Science and Technology, 9(1), pp. 79–94. https://doi.org/10.1002/ghg.1834
7. Daval D., Sissmann O., Menguy N., Saldi G.D., Guyot F., Martinez I., Corvisier J., Garcia B., Machouk I., Knauss K.G., Hellmann R. (2011). Influence of amorphous silica layer formation on the dissolution rate of olivine at 90 °C and elevated pCO2 . Chemical Geology, 284(1–2), pp. 193–209. https://dx.doi.org/10.1016/j.chemgeo.2011.02.021
8. DeVries K.L., Mellegard K.D., Callahan G.D., Goodman W.M. (2005). Cavern roof stability for natural gas storage in bedded salt. Final Report. Rapid City: RESPEC, 191 p.
9. Donadei S., Schneider G.S. (2016). Compressed air energy storage in underground formations. Storing Energy. Elsevier, pp. 113–133. http://dx.doi.org/10.1016/B978-0-12-803440-8.00006-3
10. Donadei S., Schneider G.S. (2022). Compressed air energy storage. Storing Energy. Elsevier, pp. 141–156. https://doi.org/10.1016/B978-0-12-824510-1.00034-9
11. Duhan J. (2018). Compressed Air Energy Storage in Salt Caverns: Geomechanical Design Workflow, CAES Siting Study from a Geomechanics Perspective, and Deep Brine Disposal. Master of Applied Science in Civil Engineering thesis. Waterloo: Univ. of Waterloo, 183 p.
12. Ennis-King J., Gibson-Poole C.M., Lang S.C., Paterson L. (2002). Long term numerical simulation of geological storage of CO2 in the Petrel sub-basin, North West Australia. Greenhouse Gas Control Technologies, Proceedings of the 6th International Conference on Greenhouse Gas Control Technologies. Kyoto, Japan: Elsevier Science, pp. 1–4.
13. Espinoza D.N., Vandamme M., Pereira J.M., Dangla P., Vidal-Gilbert S. (2014). Measurement and modeling of adsorptive–poromechanical properties of bituminous coal cores exposed to CO2: Adsorption, swelling strains, swelling stresses and impact on fracture permeability. International Journal of Coal Geology, 134–135, pp. 80–95. http://dx.doi.org/10.1016/j.coal.2014.09.010
14. Ettinger I.L. (1966). Gas content of fossil coals. Moscow: Nedra, 224 p. (In Russ.)
15. Gerdemann S.J., O’Connor W.K., Dahlin D.C., Penner L.R., Rush H. (2007). Ex situ aqueous mineral carbonation. Environmental science & technology, 41(7), pp. 2587–2593. https://doi.org/10.1021/es0619253
16. Gillhaus A., Horvath P.L. (2008). Compilation of geological and geotechnical data of worldwide domal salt deposits and domal salt cavern fields: Research Project Report 2007-1-SMRI. Clarks Summit, PA, USA: Solution Mining Research Insitute and KBB Underground Technologies GmbH.
17. Gislason S.R., Wolff-Boenisch D., Stefansson A., Oelkers E.H., Gunnlaugsson E., Sigurdardottir H., Sigfusson B., Broecker W.S., Matter J.M., Stute M., Axelsson G., Fridriksson T. (2010). Mineral sequestration of carbon dioxide in basalt: A pre-injection overview of the CarbFix project. International Journal of Greenhouse Gas Control, 4(3), pp. 537–545. https://doi.org/10.1016/j.ijggc.2009.11.013
18. Goff F., Lackner K.S. (1998). Carbon dioxide sequestering using ultramafic rocks. Environmental Geosciences, 5(3), pp. 89–101. https://doi.org/10.1046/J.1526-0984.1998.08014.X
19. Goldberg D.S., Takahashi T., Slagle A.L. (2008). Carbon dioxide sequestration in deep-sea basalt. Proceedings of the National Academy of Sciences, 105(29), pp. 9920–9925. https://doi.org/10.1073/pnas.0804397105
20. GOST R ISO 27914-2023 (2023). Capture, transport and storage of carbon dioxide (Underground). ISO 27914:2017, IDT. (In Russ.)
21. Gridin V.A., Sterlenko Z.V., Eremina N.V., Logvinova T.V. (2015). Geological bases for the design and operation of underground gas storage facilities. Stavropol: North Caucasian Fed. Univer., 110 p. (In Russ.)
22. Gunter W.D., Perkins E.H., McCann T.J. (1993). Aquifer disposal of CO2 -rich gases: Reaction design for added capacity. Energy Conversion and management, 34(9–11), pp. 941–948. https://doi.org/10.1016/0196-8904%2893%2990040-H
23. Gysi A.P., Stefánsson A. (2012). CO2 –water–basalt interaction. Low temperature experiments and implications for CO2 sequestration into basalts. Geochimica et Cosmochimica Acta, 81, pp. 129–152. https://doi.org/10.1016/J.GCA.2011.12.012
24. Hana J. X., Lua Y. J., Makarovaa E. Yu., Bogomolova A. Kh., and Yang Z. Z. (2019). Molecular Simulation of CH4 and CO2 Competitive Adsorption in Moisture Coals. Solid Fuel Chemistry, (5), pp. 270–279. https://doi.org/10.3103/S0361521919050057
25. Hamling J. (2015). Bell Creek Oil Field: A Study of Associated CO2 Storage with a Commercial CO2 Enhanced Oil Recovery Project. San Francisco, CA: IEAGHG Monitoring Research Network Meeting Lawrence Berkeley Laboratory. 34 p. https://dokumen.tips/documents/bell-creek-oilfield-a-study-of-associated-co2-bell-creek-oil-field-a-study.html?page=1
26. Hänchen M., Prigiobbe V., Baciocchi R., Mazzotti M. (2008). Precipitation in the Mg-carbonate system–effects of temperature and CO2 pressure. Chemical Engineering Science, 63(4), pp. 1012–1028. https://doi.org/10.1016/j.ces.2007.09.052
27. Heiskanen E. (2006). Case 24: Snohvit CO2 capture & storage project. Helsinki: National Consumer Research Centre, 20 p. https://www.esteem-tool.eu/fileadmin/esteem-tool/docs/CASE_24_def.pdf
28. Horváth P.L., Donadei S., Zapf D. (2020). Detailing of Basic Data, Information System & Potential Estimate for Site Selection of Salt Caverns for CAES and Hydrogen Storage in Bedded Salt. Solution Mining Research Institute Fall 2020 Virtual Technical Conference, pp. 1–16.
29. Huijgen W.J., Ruijg G.J., Comans R.N., Witkamp G.J. (2006). Energy consumption and net CO2 sequestration of aqueous mineral carbonation. Industrial & Engineering Chemistry Research, 45(26), pp. 9184–9194. http://dx.doi.org/10.1021/ie060636k
30. IOGCC (1988). Natural Gas Storage in Salt Caverns, A Guide for State Regulators. Oklahoma: Energy Resources Committee of the Interstate Oil and Gas Compact Commission, 45 p.
31. Johnson J.W., Nitao J.J., Steefel C.I., Knauss K.G. (2001). Reactive transport modeling of geologic CO2 sequestration in saline aquifers: the influence of intra-aquifer shales and the relative effectiveness of structural, solubility, and mineral trapping during prograde and retrograde sequestration. First national conference on carbon sequestration. National Energy and Technology Laboratory USA, pp. 14–17.
32. Johnson J.W., Nitao J.J., Knauss K.G. (2004). Reactive transport modelling of CO2 storage in saline aquifers to elucidate fundamental processes, trapping mechanisms and sequestration partitioning. Geological Society, London, Special Publications, 233(1), pp. 107–128. https://doi.org/10.1144/GSL.SP.2004.233.01.08
33. Khan S.A. (2010). The analysis of world projects on catching and a burial place of carbonic gas. Georesursy = Georesources, 4(36), pp. 55–62. (In Russ.)
34. Lackner K.S., Wendt C.H., Butt D.P., Joyce E.L. Jr., Sharp D.H. (1995). Carbon dioxide disposal in carbonate minerals. Energy, 20(11), pp. 1153–1170. https://doi.org/10.1016/0360-5442(95)00071-N
35. Lindeberg E., Wessel-Berg D. (1997). Vertical convection in an aquifer column under a gas cap of CO2 . Energy Conversion and management, 38, pp. 229–234. https://doi.org/10.1016/S0196-8904(96)00274-9
36. Makarova E.Yu., Mitronov D.V. (2015). Resource base and prospects for coalbed methane production in Russia. Georesursy = Georesources, 2(61), pp. 101–106. (In Russ.)
37. Małachowska A., Łukasik N., Mioduska J., Gębicki J. (2022). Hydrogen storage in geological formations – The potential of salt caverns. Energies, 15(14), 5038. https://doi.org/10.3390/en15145038
38. Maldal T., Tappel I.M. (2004). CO2 underground storage for Snøhvit gas field development. Energy, 29(9–10), pp. 1403–1411. https://doi.org/10.1016/j.energy.2004.03.074
39. Matter J.M., Takahashi T., Goldberg D. (2007). Experimental evaluation of in situ CO2 -water-rock reactions during CO2 injection in basaltic rocks: Implications for geological CO2 sequestration. Geochemistry, Geophysics, Geosystems, 8(2), Q02001. https://doi.org/10.1029/2006GC001427
40. Metz B., Davidson O., de Coninck H., Loos M., Meyer L. (2005). IPCC Special Report on Carbon dioxide Capture and Storage. Cambridge, UK: Cambridge Univ. Press, 431 p. https://www.ipcc.ch/report/carbon-dioxide-capture-and-storage/
41. Morse D.G., Mastalerz M., Drobniak A., Rupp J.A., Harpalani S. (2010). Variations in coal characteristics and their possible implications for CO2 sequestration: Tanquary injection site, southeastern Illinois, USA. International journal of coal geology, 84(1), pp. 25–38. http://dx.doi.org/10.1016/j.coal.2010.08.001
42. National Academies of Sciences, Engineering, and Medicine. (2019). sequestration of supercritical CO2 in deep sedimentary geological formations. Negative Emissions Technologies and Reliable Sequestration: A Research Agenda, pp. 273–281. https://doi.org/10.17226/25259
43. Oelkers E.H., Gislason S.R., Matter J. (2008). Mineral carbonation of CO2. Elements, 4(5), pp. 333–337. http://dx.doi.org/10.2113/gselements.4.5.333
44. Oldenburg C.M. (2003) Carbon dioxide as cushion gas for natural gas storage. Energy and Fuels, 17(1), pp. 240–246. https://doi.org/10.1021/ef020162b
45. Plaat H. (2009). Underground gas storage: Why and how. Geological Society, London, Special Publications, 313(1), pp. 25–37. https://doi.org/10.1144/SP313.4
46. Reeves S., Oudinot A. (2005). The Allison Unit CO2 -ECBM Pilot – A Reservoir and Economic Analysis. 2005 Int. Coalbed Methane symp., 0522, pp. 1–16.
47. Rochelle C.A., Czernichowski-Lauriol I., Milodowski A.E. (2004). The impact of chemical reactions on CO2 storage in geological formations: a brief review. Geological Society, London, Special Publications, 233(1), pp. 87–106. http://dx.doi.org/10.1144/GSL.SP.2004.233.01.07
48. Sasaki K., Akibayashi S. (2000). A Calculation Model for Liquid CO2 Injection into Shallow Sub-Seabed Aquifer. Annals of the New York Academy of Sciences, 912(1), pp. 211–225. https://doi.org/10.1111/j.1749-6632.2000.tb06775.x
49. Seifritz W. (1990). CO2 disposal by means of silicates. Nature, 345, pp. 486–486. https://doi.org/10.1038/345486b0
50. Sipilä J., Teir S., Zevenhoven R. (2008). Carbon dioxide sequestration by mineral carbonation: Literature review update 2005–2007. Report VT 2008-1. 59 p. https://remineralize.org/wp-content/uploads/2015/10/LITR1.pdf
51. Snæbjörnsdóttir S.Ó., Sigfússon B., Marieni C., Goldberg D., Gislason S.R., Oelkers, E.H. (2020). Carbon dioxide storage through mineral carbonation. Nature Reviews Earth & Environment, 1(2), pp. 90–102. https://doi.org/10.1038/s43017-019-0011-8
52. Sushentsova B.Yu. (2013). Interaction of carbon dioxide with ultrabasic and basic rocks. Cand. geol. and min. sci. diss. Moscow, 255 p. (In Russ.)
53. Tarkowski R., Czapowski G. (2018). Salt domes in Poland–Potential sites for hydrogen storage in caverns. International Journal of Hydrogen Energy, 43(46), pp. 21414–21427. http://dx.doi.org/10.1016/j.ijhydene.2018.09.212
54. Thoms R.L., Martinez J.D. (1978). Preliminary long-term stability criteria for compressed air energy storage caverns in salt domes. Baton Rouge, USA: Louisiana State Univ., 90 p. https://digital.library.unt.edu/ark:/67531/metadc1203514/m2/1/high_res_d/6524724.pdf
55. Vesovic V., Wakeham W.A., Olchowy G.A., Sengers J.V., Watson J.T.R., Millat J. (1990). The transport properties of carbon dioxide. Journal of physical and chemical reference data, 19(3), pp. 763–808. https://doi.org/10.1063/1.555875
56. Warren J.K. (2016). Evaporites: A Geological Compendium. Berlin, Springer, 1807 p. https://doi.org/10.1007/978-3-319-13512-0
57. Wilson M., Monea M., Whittaker S., White D., Law D., Chalaturnyk R. (2004). IEA GHG Weyburn CO2 Monitoring & Storage Project: Summary Report 2000–2004. Regina: Petroleum Technology Research Centre, 284 p.
58. Yu H., Zhou, G., Fan W., Ye J. (2007). Predicted CO2 enhanced coalbed methane recovery and CO2 sequestration in China. International Journal of Coal Geology, 71(2–3), pp. 345–357. https://doi.org/10.1016/j.coal.2006.10.002
59. Zweigel P., Arts R., Lothe A.E., Lindeberg E.B. (2004). Reservoir geology of the Utsira Formation at the first industrial-scale underground CO2 storage site (Sleipner area, North Sea). Geological Society, London, Special Publications, 233(1), pp. 165–180. http://dx.doi.org/10.1144/GSL.SP.2004.233.01.11
Review
For citations:
Korzun A.V., Stoupakova A.V., Kharitonova N.A., Aseeva A.V., Osipov K.O., Pronina N.V., Makarova E.Yu., Vaytekhovich A.P., Lopatin A.Yu., Karpushin M.Yu., Peregudov Yu.D., Sautkin R.S., Bolshakova M.A., Sitar K.A., Redkin A.S. Applicability of natural geological objects for storage, disposal and utilization of carbon dioxide (review). Georesursy = Georesources. 2023;25(2):22-35. (In Russ.) https://doi.org/10.18599/grs.2023.2.2