New Petroleum Kitchen Discovery in the Southern Part of the West Siberian Basin
https://doi.org/10.18599/grs.2025.4.13
Abstract
Comprehensive lithological and geochemical studies were conducted on the core samples from three wells located in the southern periphery of the West Siberian Petroleum Basin (northern part of the Omsk region). These studies enabled the identification and detailed characterization of the main source rocks in the area, as well as the assessment of potential hydrocarbon generation volumes within the study area. The organic-rich siliceous mudstones of the Bazhenov
Formation, along with coals and carbonaceous shales of the Vasyugan and Tyumen Formations, were identified as the main source rocks. A detailed analysis of the well sections revealed that the generation potential of the Bazhenov Formation is associated with the Type II/IIS kerogen, which is characterized by early generation and a higher initial hydrogen index. The coals and carbonaceous shales of the Vasyugan and Tyumen Formations were determined to possess oil-generating potential due to the anomalously high content of liptinite macerals in the organic matter (OM) composition. The studies of the molecular and isotopic compositions of rock extracts from both source rock and reservoir rock intervals, as well as the gas sample from the field, confirm that the fluids across the area are derived from marine OM of the Bazhenov Formation and the carbonaceous matter of the Vasyugan and Tyumen Formations, as well as their mixtures. The obtained results demonstrate the presence of an early generation petroleum kitchen in the area studied. These findings contribute to a new understanding of the hydrocarbon prospectivity of the region. The study also highlights the necessity for 3D basin modeling to reassess the hydrocarbon resources and their localization within the southern periphery of the West Siberian Petroleum Basin.
Keywords
About the Authors
B. AndreyevRussian Federation
Bogdan Andreyev – PhD student in the “Petroleum Engineering” program, Junior Research Scientist
30/1 Bolshoy Boulevard, Moscow, 121205
E. V. Kozlova
Russian Federation
Elena V. Kozlova – PhD in Geology and Mineralogy, Leading Research Scientist at the Center for Petroleum Science and Engineering
11 Sikorskogo st., Moscow, 121205
T. D. Bulatov
Russian Federation
Timur D. Bulatov – PhD, Researcher at the Center for Petroleum Science and Engineering, Skolkovo Institute of Science and Technology
11 Sikorskogo st., Moscow, 121205
T. I. Karamov
Russian Federation
Tagir I. Karamov – PhD, Researcher at the Center for Petroleum Science and Engineering
11 Sikorskogo st., Moscow, 121205
E. A. Leushina
Russian Federation
Evgenia A. Leushina – PhD in Chemistry, Leading Research Scientist at the Center for Petroleum Science and Engineering
11 Sikorskogo st., Moscow, 121205
V. V. Shirokova
Russian Federation
Veronika V. Shirokova – PhD student in the “Petroleum Engineering” program, Junior Research Scientist
30/1 Bolshoy Boulevard, Moscow, 121205
A. E. Bazhanova
Russian Federation
Alina E. Bazhanova – PhD student in the “Petroleum Engineering” program, Junior Research Scientist
30/1 Bolshoy Boulevard, Moscow, 121205
A. P. Vaitekhovich
Russian Federation
Anastasia P. Vaytekhovich – PhD student at the Department of Geology and Geochemistry of Fossil Fuels
1 Leninskie Gory, Moscow
N. V. Pronina
Russian Federation
Natalia V. Pronina – PhD in Geology and Mineralogy, Associate Professor at the Department of Geology and Geochemistry of Fossil Fuels
1 Leninskie Gory, Moscow
V. V. Dudarev
Russian Federation
Valery V. Dudarev – Independent Consultant
81 Mayakovsky St., Omsk, 644010
V. V. Kolesov
Russian Federation
Valentin V. Kolesov – PhD in Physics and Mathematics, Expert of the State Commission on Mineral Reserves of the Russian Federation, General Director
30/1 Bolshoy Boulevard, Moscow, 121205
M. Yu. Spasennykh
Russian Federation
Mikhail Yu. Spasennykh – PhD in Chemistry, Professor, Director of the Center for Petroleum Science and Engineering
30/1 Bolshoy Boulevard, Moscow, 121205
References
1. Abdel-Fattah M.I., Reda M., Fathy M., Saadawi D.A., Alshehri F., Ahmed M.S. (2024). Oil-source correlation and Paleozoic source rock analysis in the Siwa Basin, Western Desert: Insights from well-logs, Rock-Eval pyrolysis, and biomarker data. Energy Geoscience, 5(3), 100298. https://doi.org/10.1016/j.engeos.2024.100298
2. Alekseev E.Y., Bochkarev V.S., Braduchan Y. V., Volkov A.M., Gorsky A.T., Zyryanov L.N., Kulakhmetov N.K., Kulikov P.K., Lebedev I. V., Nesterov I.I., Podsosova L.L., Prozorovich G.E., Rudkevich M.Y., Rostovtsev N.N., Rudkevich M.Y., Rylkov A. V., Sidorenkov A.I., Smirnov V.G., Sobolovsky V. V., Sokolovsky A.P., Stavitsky B.P., Sterlin D.Y., Storozhev A.D., Tikhomirov Yu. P. Ushatinsky I.N., Fedortsov V.K., Shpilman V.I., Shpilman A.K., Yasovich G.S. (1976). Atlas and Explanatory Memorandum to Atlas of Litholological-Paleogeographical Maps of Jurassic and Cretaceous periods of the West-Siberian plain in scale 1:500 000. Trudy ZapSibNIGNI, 93, 85 p. (In Russ.)
3. Babushkin L.A., Voronov V.N., Zyleva L.I., Kozlov E.P., Korkunov K.V., Provtorova N.A., Sokolova A.V., Sokolovsky A.P., Cherepanov Yu.P. (2009). State Geological Map of the Russian Federation. Scale 1:1,000,000 (third generation). West Siberian Series. Sheet O-42 – Tobolsk. Explanatory Note. St. Petersburg: Cartographic Factory VSEGEI (Ministry of Natural Resources of Russia, Rosnedra, FGUP “VSEGEI”, LLC “Geotex”), 300 p. (In Russ.)
4. Badejo S.A., Fraser A.J., Neumaier M., Muxworthy A.R., Perkins J.R. (2021). 3D petroleum systems modelling as an exploration tool in mature basins: A study from the Central North Sea UK. Marine and Petroleum Geology, 133, 105271. https://doi.org/10.1016/j.marpetgeo.2021.105271
5. Bulatov, T., Kozlova, E., Leushina, E., Panchenko, I., Pronina, N., Voropaev, A., Morozov, N. and Spasennykh, M. (2021). Alginite-Rich Layers in the Bazhenov Deposits of Western Siberia. Geosciences, 11(6), p. 252. https://doi.org/10.3390/geosciences11060252
6. Carr A.D. (2000). Supression and retardation of vitrinite reflectance, part 1. Formation and significance for hydrocarbon generation. Journal of Petroleum Geology, 23(3), pp. 313–343. https://doi.org/10.1111/j.1747-5457.2000.tb01022.x
7. Chen Y., Caro L.D., Mastalerz M., Schimmelmann,A., Blandón A. (2012). Mapping the chemistry of resinite, funginite and associated vitrinite in coal with micro-FTIR. Journal of Microscopy, 249(1), pp. 69–81. https://doi.org/10.1111/j.1365-2818.2012.03685.x
8. Chen, Z., Wang, L., Yang, G., Zhang, B., Ying, D., Yuan, B., Pei, S. and Li, W. (2020). Geological structures and potential petroleum exploration areas in the southwestern Sichuan fold-thrust belt, SW China. Petroleum Exploration and Development, 47(4), pp. 699–713. https://doi.org/10.1016/S1876-3804(20)60086-6
9. Decision of the 6th Interdepartmental Stratigraphic Meeting on the consideration and adoption of updated stratigraphic schemes of Mesozoic deposits of Western Siberia (2004). Ed: Yu. E. Baturin, V. S. Bochkarev, Yu. V. Braduchan, F. G. Gurari, O. S. Dzyuba, V. I. Ilyina, Yu. N. Karogodin, V. I. Krasnov, N. Kh. Kulakhmetov, S. V. Meledina, N. K. Mogucheva, G. P. Myasnikova, A. A. Nezhdanov, B. L. Nikitenko, V. M. Podobina, L. V. Rovnina, V. V. Sapyanik, A. V. Shpilman, B. N. Shurygin, Novosibirsk: Novosibirsk: SBRAS, 148 p. (In Russ.)
10. Dehao F., Chenglin L., Wenli J., Xuan G., Pei L., Bin L., Yongjun L., Wei, Z. (2020). Oil and gas resource assessment of basins with low levels of exploration on the periphery of the Junggar Basin and identification of exploration targets. China Petroleum Exploration, 25(6), pp. 26–38. https://doi.org/10.3969/j.issn.1672-7703.2020.06.003
11. Elisheva O. V. (2008). Geology and oil and gas potential of the CallovianOxfordian deposits of the Omsk Irtysh region. Novosibirsk: Trofimuk Institute of Petroleum Geology and Geophysics of Siberian Branch Russian Academy of Sciences (IPGG SB RAS), 160 p. (In Russ.)
12. Espitalié J. (1986). Use of Tmax as a maturation index for different types of organic matter. Comparison with vitrinite reflectance, thermal modelling in sedimentary basins. Editions Technip Paris, pp. 475–496.
13. Espitalie J., Madec M., Tissot B., Mennig J.J., Leplat P. (1977). Source Rock Characterization Method for Petroleum Exploration. Offshore Technology Conference, pp. 439–448. https://doi.org/10.4043/2935-MS
14. French K.L., Birdwell J.E., Lewan M.D. (2020). Trends in thermal maturity indicators for the organic sulfur-rich Eagle Ford Shale. Marine and Petroleum Geology, 118(3). https://doi.org/10.1016/j.marpetgeo.2020.104459
15. Goffey G., Attree M., Curtis P., Goodfellow F., Lynch J., Mackertich D., Orife T., Tyrrell, W. (2018). New exploration discoveries in a mature basin: offshore Denmark. Geological Society, London, Petroleum Geology Conference Series, 8(1), pp. 287–306. https://doi.org/10.1144/PGC8.1
16. Goncharov I.V., Nosova S.V., Samoylenko V.V. (2003). Genetic types of oils in the Tomsk region. 5th International Conference. Tomsk: Institute of Atmospheric Optics SB RAS, pp. 10–13. (In Russ.)
17. Goncharov I.V., Veklich M.A., Milkov A.V., Samoylenko V.V., Oblasov N.V., Fadeeva S.V., Zherdeva A.V. (2016a). Isotopic composition of carbon and hydrogen fluids from the Tevriz gas-condensate field. XXI Symposium on Isotope Geochemistry, pp. 184–187. (In Russ.)
18. Goncharov I.V., Samoylenko V.V., Veklich M.A., Bakhtina E.S., Zherdeva A.V. (2016b). Isotopic composition of carbon extracts from rocks of the Bazhenov Formation at different catagenesis levels. XXI Symposium on Isotope Geochemistry, pp. 187–190. (In Russ.)
19. Goncharov I.V., Fadeeva S.V., Samoylenko V.V., Oblasov N.V., Veklich M.A. (2016c). Anomalous isotopic composition of carbon extracts from Lower Jurassic deposits of the Kulgin and Archinsky fields in the Tomsk region. XXI Symposium on Isotope Geochemistry, pp. 191–194. (In Russ.)
20. Goncharov I.V., Veklich M.A., Oblasov N.V., Samoilenko V.V., Fadeeva S.V., Kashapov R.S., Zherdeva A.V., Smirnova N.A. (2023). Nature of Hydrocarbon Fluids at the Fields in the North of Western Siberia: the Geochemical Aspect. Geochemistry International, 68(2), pp. 115–138. (In Russ.) https://doi.org/10.31857/S0016752523020048
21. Gurari F.G. (1996). West Siberian hydrocarbon province - the discovery of the century. Novosibirsk: SNIIGGiMS, 144 p. (In Russ.)
22. Hasiah A.W. (1997). Evidence of early generation of liquid hydrocarbon from suberinite as visible under the microscope. Organic Geochemistry, 27(7–8), pp. 591–596. https://doi.org/10.1016/S0146-6380(97)00085-5
23. Hedberg H.D. (1968). Significance of High-Wax Oils with Respect to Genesis of Petroleum. AAPG Bulletin, 52(5), pp. 736–750. https://doi.org/10.1306/5D25C45B-16C1-11D78645000102C1865D
24. Hunt J.M. (1991). Generation of gas and oil from coal and other terrestrial organic matter. Organic Geochemistry, 17(6), pp. 673–680. https://doi.org/10.1016/0146-6380(91)90011-8
25. Methods for the Petrographic Analysis of Coals—Part 3: Method of Determining Maceral Group Composition ISO 7404-3. (2009). Switzerland.
26. Jarvie D.M. (2012). Shale Resource Systems for Oil and Gas. Part 1— Shale-gas Resource Systems. In Shale Reservoirs—Giant Resources for the 21st Century. American Association of Petroleum Geologists, pp. 69–87. https://doi.org/10.1306/13321446M973489
27. Jarvie D.M. (2014). Components and processes affecting producibility and commerciality of shale resource systems. Geologica Acta, 12, pp. 307–325. https://doi.org/10.1344/GEOLOGICAACTA2014.12.4.3
28. Jarvie D.M., Lundell L.L. (2001). Kerogen Type and Thermal Transformation of Organic Matter in the Miocene Monterey Formation. In C.M. Isaacs and J. Rullkötter (eds). The Monterey Formation: From Rocks to Molecules. Columbia University Press, New York, pp. 269–295.
29. Kalacheva, D.Y., Sannikova, I.A. and Morozov, N. V. (2023). Contribution of the Lower-Middle Jurassic source rocks in petroleum potential of the Jurassic-Cretaceous series within the central part of West Siberia. Georesursy = Georesources, 25(4), pp. 29–41. (In Russ.) https://doi.org/10.18599/grs.2023.4.2
30. Karamov T., Leushina E., Kozlova E., Spasennykh M. (2023). Broad Ion Beam–Scanning Electron Microscopy Characterization of Organic Porosity Evolution During Thermal Treatment of Bazhenov Shale Sample. SPE Reservoir Evaluation & Engineering, 26(01), pp. 64–74. https://doi.org/10.2118/210599-PA
31. Khorasani G.K., Michelsen J.K. (1991). Geological and laboratory evidence for early generation of large amounts of liquid hydrocarbons from suberinite and subereous components. Organic Geochemistry, 17(6), pp. 849–863. https://doi.org/10.1016/0146-6380(91)90025-F
32. Killops S.D., Funnell R.H., Suggate R.P., Sykes R., Peters K.E., Walters C., Woolhouse A.D., Weston R.J., Boudou J.-P. (1998). Predicting generation and expulsion of paraffinic oil from vitrinite-rich coals. Organic Geochemistry, 29(1–3), pp. 1–21. https://doi.org/10.1016/S0146-6380(98)00087-4
33. Kontorovich, A.E., Bogorodskaya, L.I., Borisova, L.S., Burshtein, L.M., Ismagilov, Z.R., Efimova, O.S., Kostyreva, E.A., Lemina, N.M., Ryzhkova, S. V., Sozinov, S.A., Fomin, A.N. and Livshits, V.R. (2019). Geochemistry and catagenetic transformation of kerogen from the bazhenov horizon. Geochemistry International, 64(6), pp. 585–593. https://doi.org/10.31857/S0016-7525646585-593
34. Kontorovich A.E., Bogorodskaya L.I., Golyshev S.I. (1985). Distribution of Stable Carbon Isotopes in Sediments of Various Genetic Origins. Russian Geology and Geophysics, 7, pp. 3–11. (In Russ.)
35. Kontorovich A.E., Ilyina V.I., Moskvins V.I., Andrusovich V.E., Borisova L.S., Danilova V.P., Kazansky Y.P., Melenevsky V.N., Solotchyna E.P., Shurygin B.N. (1995). Reference section and oil-generating potential of Lower Jurassic deposits of the Nyuril sedimentary subbasin. Russian Geology and Geophysics, 36(6), pp. 110–126. (In Russ.)
36. Kontorovich A.E., Moiseev S.A. (2000). Development of the Geological Exploration Program for 2001–2005 with a Quantitative and Qualitative Assessment of the Oil and Gas Potential of Paleozoic and Mesozoic Deposits in the Omsk Region. Novosibirsk, 257 p. (In Russ.)
37. Kontorovich A.E., Moskvin V.I., Bostrikov O.I., Danilova V.P., Fomin A.N., Fomichev A.S., Kostyreva E.A., Melenevsky V.N. (1997). Main oil source formations of the West Siberian Basin. Petroleum Geoscience, 3(4), pp. 343–358. https://doi.org/10.1144/petgeo.3.4.343
38. Kontorovich A.E., Stasova O.F. (1977). Geochemistry of Jurassic and Paleozoic oils in the southeastern regions of the West Siberian Plate, Problems of geology and hydrocarbon potential of pre-Jurassic deposits of the West Siberian Plate. Trudy SNIIGGiMS, 255, pp. 46–62. (In Russ.)
39. Kontorovich A.E., Verhovskaya N.A., Timoshina I.D., Fomichev A.S. (1986). Isotopic Composition of Carbon in Dispersed Organic Matter and Bitumoids and Some Controversial Issues of Oil Formation Theory. Russian Geology and Geophysics, 5, pp. 3–13. (In Russ.)
40. Kostyreva E.A., Moskvin V.I., Yan P.A. (2014). Geochemistry of organic matter and oil-generating potential of the Lower Jurassic Togur Suite (southeastern West Siberia). Petroleum Geology. Theory and Practice, 9(1), pp. 1–25. (In Russ.)
41. Kostyreva E.A., Sotnich I.S. (2017). Geochemistry of organic matter of the Bazhenov Formation in the north of the Khantei Anteclise. Russian Geology and Geophysics, 58(3–4), pp. 434–442. https://doi.org/10.1016/j.rgg.2016.09.019
42. Leushina E., Bulatov T., Kozlova E., Panchenko I., Voropaev A., Karamov T., Yermakov Y., Bogdanovich N., Spasennykh M. (2021a). Upper Jurassic–Lower Cretaceous Source Rocks in the North of Western Siberia: Comprehensive Geochemical Characterization and Reconstruction of Paleo-Sedimentation Conditions. Geosciences, 11(8), p. 320. https://doi.org/10.3390/geosciences11080320
43. Leushina E., Mikhaylova P., Kozlova E., Polyakov V., Morozov N., Spasennykh M. (2021b). The effect of organic matter maturity on kinetics and product distribution during kerogen thermal decomposition: the Bazhenov Formation case study. Journal of Petroleum Science and Engineering, 204, 108751. https://doi.org/10.1016/j.petrol.2021.108751
44. Lewan M.D., Kotarba M.J., Curtis J.B., Wiecław D., Kosakowski P. (2006). Oil-generation kinetics for organic facies with Type-II and -IIS kerogen in the Menilite Shales of the Polish Carpathians. Geochimica et Cosmochimica Acta, 70(13), pp. 3351–3368. https://doi.org/10.1016/j.gca.2006.04.024
45. Li S., Shao L., Liu J., Qin L., Kang S., Eriksson K.A., Chen X., Yu Z., Liu J. (2022). Oil generation model of the liptinite-rich coals: Palaeogene in the Xihu Sag, East China Sea Shelf Basin. Journal of Petroleum Science and Engineering, 209, 109844. https://doi.org/10.1016/j.petrol.2021.109844
46. Lin H.-M., Liu H., Wang X.-D., Qiu X.-W., Ju Y.-T., Meng J., Li L. (2022). Basin-filling processes and hydrocarbon source rock prediction of lowexploration degree areas in rift lacustrine basins: a case from the Wenchang Formation in low-exploration degree areas, northern Zhu I Depression, Pearl River Mouth Basin, E China. Journal of Palaeogeography, 11(2), pp. 286–313. https://doi.org/10.1016/j.jop.2022.03.002
47. Lister C.J., Atkinson E.A., Dewing K.E., King H.M., Kung L.E., Hadlari T. (2022). High Arctic basins petroleum potential, northern Canada. Geological Survey of Canada, Open File, 8897, 88 p. https://doi.org/10.4095/330203
48. Lobova G.A. (2008). Togur Oils Generation Centers in Central Part of Yugorskiy Arch (the Western Siberia). Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 150, pp. 169–182. (In Russ.)
49. Luneva T.E. (2019). Geothermal conditions and maturation of the generation potential of the oil source Togur Formation (north-west of the Tomsk region). Neftegazovaya Geologiya. Teoriya I Praktika, 14(2), pp. 1–23. (In Russ.) https://doi.org/10.17353/2070-5379/11_2019
50. Maglevannaia P.S., Kozlova E.V., Spasennykh M.Y. (2019). Analysis of Geochemical Trends for the Bazhenov Oil Shale Formation Based on Pyrolysis Data. 29th International Meeting on Organic Geochemistry. European Association of Geoscientists & Engineers, pp. 1–2. https://doi.org/10.3997/2214-4609.201902830
51. Magoon L.B., Dow W.G. (1994). The Petroleum System—From Source to Trap. AAPG Memoir. American Association of Petroleum Geologists, 655 p. https://doi.org/10.1306/M60585
52. Marunova D.A., Pronina N. V., Kalmykov A.G., Ivanova D.A., Savostin G.G., Vaitechovich A.P., Kalmykov G.A. (2023). The Evolution of Bioclasts during Catagenesis in Rocks of the Bazhenov Formation in the Territory of the Frolov Oil and Gas Region. Moscow University Geology Bulletin, 78(6), pp. 796–804. (In Russ.) https://doi.org/10.3103/S014587522306011X
53. Muammar R., Minarwan M. (2024). Changing Paradigm and Leveraging Information from Proven Plays: Discoveries in New Play and Overlooked Exploration Potential in the West Natuna Basin. EAGE/AAPG Workshop on New Discoveries in Mature Basins. European Association of Geoscientists & Engineers, pp. 1–4. https://doi.org/10.3997/2214-4609.202471010
54. Norgate C.M., Boreham C.J., Kamp P.J.J., Newman J. (1997). Relationships between hydrocarbon generation, coal type and rank for Middle Eocene coals, Buller Coalfield, New Zealand. Journal of Petroleum Geology, 20(4), pp. 427–458. https://doi.org/10.1111/j.1747-5457.1997.tb00925.x
55. Oblasov N.V. (2010). Geochemistry of carbonaceous organic matter and its role in the formation of oil and gas fields in the Tomsk region, 157 p. (In Russ.)
56. Oil and gas forecast map: O-43 (Tara). (2017). State geological map of the Russian Federation. Third generation. Oil and gas forecast map. West Siberian series, scale: 1:1000000, series: West Siberian, compiled by: LLC Geotex,. Federal State Budgetary Institution ‘VSEGEI’, 1 p. (In Russ.)
57. Oksenoyd E.E., Volkov V.A., Oleinik E.V., Myasnikova G.P. (2017). Kerogen types of bazhenov formation based on pyrolysis data and their comparison with oil parameters. Oil and Gas Studies, (5), pp. 34–43. (In Russ.) https://doi.org/10.31660/0445-0108-2017-5-34-43
58. Orr W.L. (1986). Kerogen/asphaltene/sulfur relationships in sulfurrich Monterey oils. Organic Geochemistry, pp. 499–516. https://doi.org/10.1016/0146-6380(86)90049-5
59. Pepper A.S. (1991). Estimating the petroleum expulsion behaviour of source rocks: a novel quantitative approach. Geological Society, London, Special Publications, 59(1), pp. 9–31. https://doi.org/10.1144/GSL.SP.1991.059.01.02
60. Pepper A.S., Corvi P.J. (1995). Simple kinetic models of petroleum formation. Part III: Modelling an open system. Marine and Petroleum Geology, 12(4), pp. 417–452. https://doi.org/10.1016/0264-8172(95)96904-5
61. Peters, K.E. (1986). Guidelines for evaluating petroleum source rock using programmed pyrolysis. AAPG Bulletin, 73(3), pp. 318–329.
62. Peters, K.E., Kontorovich, A.E., Huizinga, B.J., Moldowan, J.M. and Lee, C.Y. (1994). Multiple Oil Families in the West Siberian Basin. AAPG Bulletin, 78(6), pp. 893–909. https://doi.org/10.1306/A25FE3DD-171B-11D7-8645000102C1865D
63. Petersen H.I. (2005). Oil generation from coal source rocks: the influence of depositional conditions and stratigraphic age. Geological Survey of Denmark and Greenland Bulletin, 7, pp. 9–12. https://doi.org/10.34194/geusb.v7.4822
64. Philp R.P., Mansuy L. (1997). Petroleum Geochemistry: Concepts, Applications, and Results. Energy & Fuels, 11(4), pp.749–760. https://doi.org/10.1021/ef960174v
65. Pickel W., Kus J., Flores D., Kalaitzidis S., Christanis K., Cardott B.J., Misz-Kennan M., Rodrigues S., Hentschel A., Hamor-Vido M., Crosdale P., Wagner N. (2017). Classification of liptinite – ICCP System 1994. International Journal of Coal Geology, 169, pp. 40–61. https://doi.org/10.1016/j.coal.2016.11.004
66. Prishchepa O., Borovikov I., Grokhotov E. (2021). Oil and gas content of the understudied part in the northwest of the Timan-Pechora oil and gas province according to the results of basin modeling. Journal of Mining Institute, 247, pp. 66–81. https://doi.org/10.31897/PMI.2021.1.8
67. Romero-Sarmiento M.-F., Euzen T., Rohais S., Jiang C., Littke R. (2016). Artificial thermal maturation of source rocks at different thermal maturity levels: Application to the Triassic Montney and Doig formations in the Western Canada Sedimentary Basin. Organic Geochemistry, 97, pp. 148–162. https://doi.org/10.1016/j.orggeochem.2016.05.002
68. Rosenberg Y.O., Reznik I.J. (2021). Evaluating transformation of marine kerogens from Rock-Eval measurements: A. Derivation of a scaled thermal maturation path from laboratory maturation data. Organic Geochemistry, 162, 104305. https://doi.org/10.1016/j.orggeochem.2021.104305
69. Scott J. (1992). Accurate recognition of source rock character in the Jurassic of the North West Shelf, Western Australia. The APPEA Journal, 32(1), pp. 279–289. https://doi.org/10.1071/AJ91023
70. Shatski S.B., Dargevich V.A., Generalov P.P., Kulkova I.A., Martynov V.A., Nikitin V.N., Podobina V.M. (1996). Region XXII, Western Siberia. In “Late Eocene–Early Oligocene geological and biotical events on the territory of the former Soviet Union, Part I, The regional geology of the Upper Eocene and Lower Oligocene”. GEOS, Moscow, pp. 225–235. (In Russ.)
71. Skorobogatov V.A., Davydova Y.S., Kananykhina O.G. (2017). Oilbearing capacity of Western-Siberian megaprovince. Vesti Gazovoy Nauki, 3(31), pp. 13–28. (In Russ.)
72. Snowdon L.R. (1991). Oil from Type III organic matter: resinite revisited. Organic Geochemistry, 17(6), pp. 743–747. https://doi.org/10.1016/0146-6380(91)90018-F
73. Snowdon L.R., Powell T.G. (1982). Immature Oil and CondensateModification of Hydrocarbon Generation Model for Terrestrial Organic Matter. AAPG Bulletin, 66(6), pp. 775–788. https://doi.org/10.1306/03B5A313-16D1-11D7-8645000102C1865D
74. Soromotin А.М., Solodovnikov А.Y. (2019). The ecological condition of Uvat group of license areas. Neftyanoe khozyaystvo = Oil Industry, (2), pp. 100–104. https://doi.org/10.24887/0028-2448-2019-2-100-104
75. Spasennykh M., Shirokova V., Ilmenskii A., Kozlova E., Bulatov T., Goncharova A., Leushina E. (2024). Kinetics of Organic Matter thermal transformation in source rocks: Overview of Methods and Experimental results. Georesursy=Georesources, 26(4), 3–19. https://doi.org/10.18599/grs.2024.4.2
76. Spasennykh M., Maglevannaia P., Kozlova E., Bulatov T., Leushina E., Morozov N. (2021). Geochemical Trends Reflecting Hydrocarbon Generation, Migration and Accumulation in Unconventional Reservoirs Based on Pyrolysis Data (on the Example of the Bazhenov Formation). Geosciences, 11(8), p. 307. https://doi.org/10.3390/geosciences11080307
77. Tectonic Map of the Central Parts of the West Siberian Basin in scale 1:2000000 (1998). Ed.: V.I. Shpilman, N.I. Zmanovsky, L.L. Podsosova. Tyumen: Research and analytical centre for the rational use of the subsoil, 1 p. (In Russ.)
78. Teichmuller M., Durand B. (1983). Fluorescence microscopical rank studies on liptinites and vitrinites in peat, coals, and comparison with results of Rock-Eval pyrolysis. Int. J. Coal. Geol., 2(3), pp. 197–230.
79. The new inertinite classification (ICCP System 1994). (2001). Fuel, 80(4), pp. 459–471. https://doi.org/10.1016/S0016-2361(00)00102-2
80. Tissot B.P., Welte D.H. (1978). Petroleum Formation and Occurrence. Berlin, Heidelberg: Springer Berlin Heidelberg, 720 p. https://doi.org/10.1007/978-3-642-96446-6
81. Topchiy M.S., Pronina N.V., Kalmykov A.G., Kalmykov G.A., Fomina M.M., Karpyov Yu.A., Kozlova E.V., Fadeyeva N.P. (2019). Distribution of organic matter in Bazhenov high-carbon formation. Moscow University Bulletin. Series 4. Geology, (2), pp. 46–56. (In Russ.) https://doi.org/10.33623/0579-9406-2019-2-46-56
82. Vyshemirsky V.S. (1993). Isotopic Composition of Nitrogen in Oils of Western Siberia. Russian Geology and Geophysics, 34(4), pp. 45–49. (In Russ.)
83. Vyssotski A.V., Vyssotski V.N., Nezhdanov A.A. (2006). Evolution of the West Siberian Basin. Marine and Petroleum Geology, 23(1), pp. 93–126. https://doi.org/10.1016/j.marpetgeo.2005.03.002
84. Wang T.G. (1993). Biomarker assemblages of resin-genetic immature source rocks and their geological significance. Sci. China (Ser B), 36(6), pp. 740–750.
85. Wang Y., Chen J., Pang X., Zhang T., Zhu X., Liu K. (2022). Hydrocarbon generation and expulsion of tertiary coaly source rocks and hydrocarbon accumulation in the Xihu Sag of the East China Sea Shelf Basin, China. Journal of Asian Earth Sciences, 229, 105170. https://doi.org/10.1016/j.jseaes.2022.105170
86. Whiticar, M.J. (1999). Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chemical Geology, 161(1–3), pp. 291–314. https://doi.org/10.1016/S0009-2541(99)00092-3.
87. Wilkins R.W.T., George S.C. (2002). Coal as a source rock for oil: a review. International Journal of Coal Geology, 50(1–4), pp. 317–361. https://doi.org/10.1016/S0166-5162(02)00134-9
88. Yang S., Horsfield B. (2020). Critical review of the uncertainty of Tmax in revealing the thermal maturity of organic matter in sedimentary rocks. International Journal of Coal Geology, 225(103500). https://doi.org/10.1016/j.coal.2020.103500
89. Yuan, Y., Tang, Y., Tong, L., Cao, D., Wei, Y. and Bi, C. (2024). Porosity Characteristics of Coal Seams and the Control Mechanisms of Coal Petrology in the Xishanyao Formation in the Western Part of the Southern Junggar Basin, Minerals, 14(6), p. 543. https://doi.org/10.3390/min14060543
90. Yurchenko, A., Voropaev, A., Kozlova, E., Morozov, N. and Spasennykh, M. (2021). Application of the Data on δ13C and δ18O of Carbonates for the Study of Unconventional Reservoirs on the Example of the Bazhenov Source Rocks, Western Siberia, Russia. Geosciences, 11(7), p. 264. https://doi.org/10.3390/geosciences11070264
91. Zakharov V.A., Saks V. N. (1983). Jurassic and Cretaceous Paleobiogeography and Biostratigraphy of Siberia. Moscow: Nauka, 528, pp. 5–32. (In Russ.)
92. Zhang G., Yang Y., Liu T., Xu Y., Chang X., Qu Y., Shi B., Yang B., Song T. (20241). Hydrocarbon Source Rock Evaluation of the Lucaogou Shale in the Periphery of Bogeda Mountain (SE Junggar Basin, China) and Its Implications for Shale Oil Exploration: Insights from Organic Geochemistry, Petrology, and Kinetics Pyrolysis. Processes, 12(2), p. 356. https://doi.org/10.3390/pr12020356
93. Zhang, J., Lin, W., Li, M., Wang, J., Xiao, X., Li, Y. and Zhang, X. (2023). Evolution Mechanism of Microscopic Pore System in Coal-Bearing Marine–Continental Transitional Shale with Increasing Maturation. Minerals, 13, p. 1482. https://doi.org/https://doi.org/10.3390/min13121482
94. Zhang T., Jiang S., Van der Land C. (2024b). Organic matter enrichment in basin periphery: A case study of Wufeng-Longmaxi shale, Marcellus shale, and Ohio shale. Sedimentary Geology, 468, 106668. https://doi.org/10.1016/j.sedgeo.2024.106668
95. Zuber S., Hashikin N., Yusof M., Fahmi M., Hashim R., Abdul Aziz M. (2021). Effective Atomic Number based on Energy Dispersive X-Ray (EDX) Analysis and Carbon Hydrogen Nitrogen (CHN) Analysis for Phantom Material in Medical Physics Applications. Malaysian Journal of Medicine and Health Sciences, 17, pp. 116–121.
96. Zyleva L.I., Korkunov K.V., Kozirev V.E., Pestova L.E., Kalashnikova O.S., Makarova A.N., Montonen E.V., Novikova L.P. (2017). State Geological Map of the Russian Federation at Scale 1:1,000,000. Third Generation. West Siberian Series. Sheet O-43 – Tara. Explanatory Note. St. Petersburg: Cartographic Factory VSEGEI, 235 p. (In Russ.)
Review
For citations:
Andreyev B., Kozlova E.V., Bulatov T.D., Karamov T.I., Leushina E.A., Shirokova V.V., Bazhanova A.E., Vaitekhovich A.P., Pronina N.V., Dudarev V.V., Kolesov V.V., Spasennykh M.Yu. New Petroleum Kitchen Discovery in the Southern Part of the West Siberian Basin. Georesursy = Georesources. 2025;27(4):192-215. (In Russ.) https://doi.org/10.18599/grs.2025.4.13








.png)

