Preview

Georesources

Advanced search

First radiometric dating of tonsteins from coal-bearing succession of the Kuznetsk Basin: U-Pb geochronology of the Tailugan Formation

https://doi.org/10.18599/grs.2023.2.15

Abstract

Tonsteins, predominantly solid kaolinite clay interbeds, are widespread in the coals of the Kuznetsk Basin and usually contain idiomorphic zircon grains of magmatic origin in quantities suitable for uranium-lead (U-Pb) radiometric dating. For the first time, tonstein zircons from coal seam 78 of the Tailugan Formation (Fm) are dated by two methods: Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) and Chemical Abrasion Isotope-Dilution Thermal Ionization Mass Spectrometry (CA-ID-TIMS).
The CA-ID-TIMS datings of 257.0 ± 1.3 Ma and 256.6 ± 0.4 Ma determine the age of the lower boundary of the Tailugan Fm and the Tailuganian Regional Stage at 257.0 Ma. We estimate the duration of the Tailuganian to be around 4.22 million years. The dating results make it possible to directly correlate the Tailuganian of the Kuzbass with the upper half of the Wuchiapingian and with most of the Changhsingian of the International Chronostratigraphic Scale.
The accumulation rate of total sediments of the Tailugan Fm, calculated without considering the compaction index, is approximately 0.13–0.18 mm/year, and the rate of coal accumulation is 0.024 mm/year. Such values are comparable to the accumulation rates of the Late Paleozoic coal-bearing strata of the Donetsk Basin and Western Australia. The rate of peat accumulation during the Tailuganian, calculated at a compaction index of 10:1, has been estimated at 0.24 mm/year. This value is comparable to the rates of peat accumulation in the Holocene bogs of the Kuznetsk Alatau in Siberia and the European part of Russia.
The presence of tonsteins in the coal seams of the Tailugan Fm suggests that the upper surface of the peat at the time of its accumulation was below the water level, serving as a protective screen for the thin volcanic deposits and preventing its erosion.
The assemblages of macroflora, ostracods, conchostracans and bivalves considerably vary through the section of the Tailugan Fm. This variation makes it possible to identify in Kuzbass the stratigraphic level that corresponds to the boundary between the Wuchiapingian and Changhsingian stages in the future.

About the Authors

V. V. Silantiev
Kazan (Volga Region) Federal University; Branch of the Kazan (Volga Region) Federal University in the city of Jizzakh
Russian Federation

Vladimir V. Silantiev – Dr. Sci. (Geology and Mineralogy), Head of the Department of Paleontology and Stratigraphy, Institute of Geology and Petroleum Technologies

18, Kremlevskaya st., Kazan, 420008



Ya. M. Gutak
Siberian State Industrial University; Kazan (Volga Region) Federal University
Russian Federation

Yaroslav M. Gutak – Dr. Sci. (Geology and Mineralogy), Professor, Head of the Department of Geology, Geodesy and Life Safety, Institute of Mining and Geosystems

42, Kirova st., Novokuznetsk, 654007



M. Tichomirowa
Technische Universität Bergakademie Freiberg
Germany

Marion Tichomirowa – Dr. rer. nat., Head of the Isotopic Geochemistry & Geochronology Laboratories, Institute of Mineralogy

6, Akademiestraße, Freiberg, 09599



A. V. Kulikova
Sobolev Institute of Geology and Mineralogy of the Siberian Branch of the Russian Academy of Sciences; Kazan (Volga Region) Federal University
Russian Federation

Anna V. Kulikova – Cand. Sci. (Geology and Mineralogy), Researcher, Laboratory of Geodynamics and Magmatism

3, Аk. Koptyug ave., Novosibirsk, 630090



A. S. Felker
Borissiak Paleontological Institute of the Russian Academy of Sciences; Kazan (Volga Region) Federal University
Russian Federation

Anastasia S. Felker – Cand. Sci. (Geology and Mineralogy), Junior Researcher, Arthropod Laboratory

123, Profsoyuznaya st., Moscow, 117997



M. N. Urazaeva
Kazan (Volga Region) Federal University
Russian Federation

Milyausha N. Urazaeva – Cand. Sci. (Geology and Mineralogy), Assistant Professor, Department of Paleontology and Stratigraphy, Institute of Geology and Petroleum Technologies

18, Kremlevskaya st., Kazan, 420008



L. G. Porokhovnichenko
Tomsk State University; Kazan (Volga Region) Federal University
Russian Federation

Lyubov G. Porokhovnichenko – Cand. Sci. (Geology and Mineralogy), Research Engineer, Laboratory of Micropaleontology, Faculty of Geology and Geography

36, Lenin ave., Tomsk, 634050



E. V. Karasev
Paleontological Institute of the Russian Academy of Sciences; Kazan (Volga region) Federal University
Russian Federation

Evgeniy V. Karasev – Cand. Sci. (Biology), Senior Researcher, Laboratory of Paleobotany Borissiak

123, Profsoyuznaya st., Moscow, 117997



A. S. Bakaev
Paleontological Institute of the Russian Academy of Sciences; Kazan (Volga region) Federal University
Russian Federation

Aleksandr S. Bakaev – Cand. Sci. (Geology and Mineralogy), Researcher, Laboratory of Paleoichthyology, Borissiak

123, Profsoyuznaya st., Moscow, 117997



V. V. Zharinova
Kazan (Volga Region) Federal University; Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences
Russian Federation

Veronika V. Zharinova – Cand. Sci. (Geology and Mineralogy), Senior Lecturer, Department of Paleontology and Stratigraphy, Institute of Geology and Petroleum Technologies

18, Kremlevskaya st., Kazan, 420008



M. A. Naumcheva
Paleontological Institute of the Russian Academy of Sciences; Kazan (Volga region) Federal University
Russian Federation

Maria A. Naumcheva – Cand. Sci. (Geology and Mineralogy), Junior Researcher, Laboratory of Protistology, Borissiak

123, Profsoyuznaya st., Moscow, 117997



References

1. Adamenko M.M., Gutak Ya.M. (2014). New data on the evolution of peat bogs of the Kuznetsk Alatau in the Holocene (on the example of the Tigertysh mountain cluster). Peatlands of Western Siberia and cycles of events: past and present: Proc. Fourth International Symposium. Tomsk: Tomsk University Press, pp. 257–259. (In Russ.)

2. Aldinger H. (1937). Permisch Ganoidfische Ostgrönland. Meddelelser om Grönland, 102(3), 392 p.

3. Amler M.R.W., Silantiev V.V. (2021). A global review of Carboniferous marine and non-marine bivalve biostratigraphy. Geological Society London, Special Publications, 512(1), pp. 893–932. https://doi.org/10.1144/sp512-2021-101

4. Arbuzov S.I., Volostnov A.V., Rikhvanov L.P., Mezhibor A.M., Ilenok S.S. (2011). Geochemistry of radioactive elements (U, Th) in coal and peat of northern Asia (Siberia, Russian Far East, Kazakhstan, and Mongolia). International Journal of Coal Geology, 86(4), pp. 318–328. https://doi.org/10.1016/j.coal.2011.03.005

5. Arbuzov S.I., Spears D.A., Vergunov A.V., Ilenok S.S., Mezhibor A.M., Ivanov V.P., Zarubina N.A. (2019). Geochemistry, mineralogy and genesis of rare metal (Nb-Ta-Zr-Hf-Y-REE-Ga) coals of the seam XI in the south of Kuznetsk Basin, Russia. Ore Geology Reviews, 113, 103073. https://doi.org/10.1016/j.oregeorev.2019.103073

6. Arbuzov S.I., Vergunov A.V., Il’enok S.S., Ivanov V.A., Ivanov V.P., Soktoev B.R. (2019). Geochemistry, mineralogy and genesis of rare-metal coal deposit in the seam XI, southern part of the Kuznetsk basin. Geosfernye issledovaniya = Geosphere Research, 2, pp. 35–61. (In Russ.) https://doi.org/10.17223/25421379/11/3

7. Ayaz S. A., Martin M., Esterle J., Amelin Y., Nicoll R. S. (2016). Age of the Yarrabee and accessory tuffs: implications for the upper Permian sediment-accumulation rates across the Bowen Basin. Australian Journal of Earth Sciences, 63(7), pp. 843–856. https://doi.org/10.1080/08120099.2016.1255254

8. Babin G.A. (2007). State geological map of the Russian Federation. Scale 1: 1,000,000 (third generation). Altai-Sayan series. Sheet N-45 – Novokuznetsk. Explanatory letter. St.Peterburg: VSEGEI, 665 p. (In Russ.)

9. Bakaev A.S. (2022). A review of the history of studying the Permian bony fish of European Russia. Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 164(3), pp. 475–500. (In Russ.) https://doi.org/10.26907/2542-064X.2022.3.475-500

10. Bakaev A.S. (2023). Revision of Permian Ray-Finned Fishes from the Kazankovo-Markino Formation of the Kuznetsk Basin. Paleontologicheskiy zhurnal = Paleontological journal, (3), с. 97–104. (In Russ.)

11. Bakaev A., Kogan I. (2020). A new species of Burguklia (Pisces, Actinopterygii) from the Middle Permian of the Volga Region (European Russia). Paläontologische Zeitschrift, 94(2), pp. 93–106. https://doi.org/10.1007/s12542-019-00487-6

12. Betekhtina O.A., Gorelova S.G., Dryagina L.L., Danilov V.I., Batyaeva S.P., Tokareva P.A. (1988). Upper Paleozoic of Angarida. Proc. Academy of Sciences of the USSR. Siberian Branch of the Institute of Geology and Geophysics. Novosibirsk: Nauka, 264 p. (In Russ.)

13. Black L.P., Kamo S.L., Allen C.M., Davis D.W., Aleinikoff J.N., Valley J.W., Mundil R., Campbell I.H., Korsch R.J., Williams I.S., Foudoulis C. (2004). Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element related matrix effect; SHRIMP, ID-TIMS, ELA-ICPMS and oxygen isotope documentation for a series of zircon standards. Chemical Geology, 205(1–2), pp. 115–140. https://doi.org/10.1016/j.chemgeo.2004.01.003

14. Bogomazov V.M., Verbitskaya N.G., Zolotov A.P., Faddeeva I.Z. (1996). Stratigraphy and formation conditions of the Kolchuginskaya Series of Kuzbass. Kuznetsk Basin – key region in stratigraphy of the Angarida Upper Paleozoic. Vol. 2. Ed. I.V. Budnikov. Novosibirsk: YuzhSibgeolkom, PSSS “Intergeo”, pp. 104–115. (In Russ.)

15. Bowring J.F., McLean N.M., Bowring S.A. (2011). Engineering cyber infrastructure for U-Pb geochronology: Tripoli and U-Pb_Redux. Geochemistry, Geophysics, Geosystems, 12(6), Q0AA19. https://doi.org/10.1029/2010GC003478

16. Budnikov I.V. (1996). Working paleobotanical colloquium Decision dedicated to the correlation of phytocomplexes of the Carboniferous and Permian of the Western Verkhoyanie region, the east of the Tunguska syneclise and Kuzbass (a stratotype of the flora-bearing Upper Paleozoic of Angarida), Novosibirsk, April 20–27. 1992. Kuznetsk Basin – key region in stratigraphy of the Angarida Upper Paleozoic. Vol. 2. Ed. I.V. Budnikov. Novosibirsk: YuzhSibgeolkom, PSSS “Intergeo”, pp. 95–99. (In Russ.)

17. Budnikov I.V., Kutygin R.V., Shi G.R., Sivtchikov V.E., Krivenko O.V. (2020). Permian stratigraphy and paleogeography of Central Siberia (Angaraland) – A review. Journal of Asian Earth Sciences, 196, 104365. https://doi.org/10.1016/j.jseaes.2020.104365

18. Buslov M.M., Watanabe T., Fujiwara Y., Iwata K., Smirnova L.V., Safonova I.Y., Semakov N.N., Kiryanova A.P. (2004). Late Paleozoic faults of the Altai region, Central Asia: Tectonic pattern and model of formation. Journal of Asian Earth Sciences, 23(5), pp. 655–671. https://doi.org/10.1016/S1367-9120(03)00131-7

19. Cagliari J., Lavina E.L.C., Philipp R.P., Tognoli F.M.W., Basei M.A.S., Faccini U.F. (2014). New Sakmarian ages for the Rio Bonito formation (Paraná Basin, southern Brazil) based on LA-ICP-MS U-Pb radiometric dating of zircons crystals. Journal of South American Earth Sciences, 56, pp. 265–277. https://doi.org/10.1016/j.jsames.2014.09.013

20. Cao W., Zahirovic S., Flament N., Williams S., Golonka J., Müller R.D. (2017). Improving global paleogeography since the late Paleozoic using paleobiology. Biogeosciences, 14(23), pp. 5425–5439. https://doi.org/10.5194/bg-14-5425-2017

21. Chernovyants M.G. (1992). Tonsteins and their use in the study of coalbearing formations. Moscow: Nedra, 144 p. (In Russ.)

22. Coal base of Russia (2003). Coal basins and deposits of Western Siberia (Kuznetsk, Gorlovsky, West Siberian basins; deposits of the Altai Territory and the Republic of Altai). V. 2. A.P. Avdeev, V.P. Bapovnev, S.M. Borisov Eds. Moscow: Geoinformtsentr, 604 p. (In Russ.)

23. Condon D.J., Schoene B., McLean N.M., Bowring S.A., Parrish R.R. (2015). Metrology and traceability of U–Pb isotope dilution geochronology (EARTHTIME Tracer Calibration Part I). Geochimica et Cosmochimica Acta, 164, pp. 464–480. https://doi.org/10.31223/osf.io/kr3ge

24. Creech M. (2002). Tuffaceous deposition in the Newcastle Coal Measures: challenging existing concepts of peat formation in the Sydney Basin, New South Wales, Australia. International Journal of Coal Geology, 51(3), pp. 185–214. https://doi.org/10.1016/S0166-5162(02)00084-8

25. Dai S., Bechtel A., Eble C.F., Flores R.M., French D.D, Graham I.T., Hood M.M., Hower J.C., Korasidis V.A., Moore T.A., Püttmann W., Wei Q., Zhao L., O’Keefe J.M.K. (2020). Recognition of peat depositional environments in coal: A review. International Journal of Coal Geology, 219, 103383. https://doi.org/10.1016/j.coal.2019.103383

26. Danilov V.I., Evtushenko V.E., Menshikova L.V., Sergienko A.A., Sukhov S.V., Tokareva P.A. (1978). Paleontological characteristics of the reference section of the Upper Permian deposits of the Kolchugino Series of the Kuznetsk Basin. New in stratigraphy and paleontology of the Middle and Upper Paleozoic of Central Siberia. Novosibirsk: SNIIGGiMS, pp. 130–144. (In Russ.)

27. Davydov V.I., Crowley J.L., Schmitz M.D., Poletaev Vl.I. (2010). High-Precision U-Pb Zircon Age Calibration of the Global Carboniferous Time Scale and Milankovitch Band Cyclicity in the Donets Basin, Eastern Ukraine. Geochemistry Geophysics Geosystems, 11, Q0AA04. https://doi.org/10.1029/2009gc002736

28. Davydov V.I., Korn D., Schmitz M.D. (2012). The Carboniferous period. The Geologic Time Scale, pp. 603–651. https://doi.org/10.1016/B978-0-444-59425-9.00023-8

29. Davydov V.I., Arefiev M.P., Golubev V.K., Karasev E.V., Naumcheva M.A., Schmitz M.D., Silantiev V.V., Zharinova V.V. (2020). Radioisotopic and biostratigraphic constraints on the classical Middle-Upper Permian succession and tetrapod fauna of the Moscow syneclise, Russia. Geology, 48(7), pp. 742–747. https://doi.org/10.1130/G47172.1

30. Davydov V.I., Karasev E.V., Nurgalieva N.G., Schmitz M.D., Budnikov I.V., Biakov A.S., Kuzina D.M., Silantiev V.V., Urazaeva M.N., Zharinova V.V., Zorina S.O., Gareev B., Vasilenko D.V. (2021). Climate and biotic evolution during the Permian-Triassic transition in the temperate Northern Hemisphere, Kuznetsk Basin, Siberia, Russia. Palaeogeography, Palaeoclimatology, Palaeoecology, 573(1), 110432. https://doi.org/10.1016/j.palaeo.2021.110432

31. Decision of the Meeting on the stratigraphy of the Upper Paleozoic deposits of Kuzbass (1996). Kuznetsk Basin – key region in stratigraphy of the Angarida Upper Paleozoic. Vol. 2. Ed. I.V. Budnikov. Novosibirsk: YuzhSibgeolkom, PSSS “Intergeo”, pp. 93–94. (In Russ.)

32. Decisions of the All-Union Conference on the development of unified stratigraphic schemes for the Precambrian, Paleozoic and Quaternary systems of Central Siberia (1979). Part 2 (Middle and Upper Paleozoic). Novosibirsk. (In Russ.)

33. Ducassou C., Mercuzot M., Bourquin S., Rossignol C., Pellenard P., Beccaletto L., Ravier E. (2019). Sedimentology and U-Pb dating of Carboniferous to Permian continental series of the northern Massif Central (France): Local palaeogeographic evolution and larger scale correlations. Palaeogeography, Palaeoclimatology, Palaeoecology, 533(1), 109228. https://doi.org/10.1016/j.palaeo.2019.06.001

34. Ermilov V.I. (2003). Yerunakovsky district. Forecast resources. Coal base of Russia. Coal basins and deposits of Western Siberia (Kuznetsk, Gorlovsky, West Siberian basins, deposits of the Altai Territory and the Republic of Altai). V. 2. Moscow: Geoinformtsentr, pp. 271–287. (In Russ.)

35. Fikri H.N., Sachsenhofer R.F., Bechtel A., Gross D. (2022). Organic geochemistry and petrography in Miocene coals in the Barito Basin (Tutupan Mine, Indonesia): Evidence for astronomic forcing in kerapah type peats. International Journal of Coal Geology, 256, 103997. https://doi.org/10.1016/j.coal.2022.103997

36. General stratigraphic scale of Russia. (In Russ.) https://vsegei.ru/ru/about/msk/str_scale/str_sch-2-2022.jpg

37. Gerstenberger H., Haase G. (1997). A highly effective emitter substance for mass spectrometric Pb isotope ratio determinations. Chemical Geology, 136, pp. 309–312. https://doi.org/10.1016/S0009-2541(96)00033-2

38. Gutak Ya.M. (2021). Development of Structure of the West Part of the AltaySayan Orogen (the Mesozoic Stage). Geosfernye issledovaniya = Geosphere Research, (1), pp. 123–129. (In Russ.) https://doi.org/10.17223/25421379/18/10

39. Gutak Ya.M., Antonova V.A. (2017). The initial stage of development of the Kuznetsk trough (south of Western Siberia). Problems of paleoecology and historical geoecology. Proc. All-Russian Scientific Conference dedicated to the memory of Professor Vitaly Georgievich Ochev. A.V. Ivanova, I.V. Novikova, I.A. Yashkov Eds. Moscow, Saratov: PIN RAS, SGTU, OOO “Forge of Advertising”, pp. 101–109. (In Russ.)

40. Gutak Ya.M., Ruban D.A. (2016). Molasse strata and the tectonic regime of their accumulation: an attempt at a conceptual synthesis based on new geological data. Vestnik SibGIU, (1), pp. 9–14. (In Russ.)

41. Gutak Ya.M., Antonova V.A., Bagmet G.N., Gabova M.F., Savitskiy V.R., Tolokonnikova Z.A. (2008). Essays on the historical geology of the Kemerovo region. Novokuznetsk, 132 p. (In Russ.)

42. Haubold H., Schaumberg G. (1985). Die Fossilien des Kupferschiefers. Pflanzen- und Tierwelt zu Beginn des Zechsteins – eine Erzlagerstätte und ihre Paläontologie. Die neue Brehm-Bücherei. Berlin: A. Ziemsen Verlag, Wittenberg Lutherstadt, 333 p.

43. Hiess J., Condon D.J., McLean N., Noble S.R. (2012). 238U/235U Systematics in Terrestrial Uranium-Bearing Minerals. Science, 335(6076), pp. 1610–1614. https://doi.org/10.1126/science.1215507

44. Hudspith V., Scott A.C., Collinson M.E., Pronina N., Beeley T. (2012). Evaluating the extent to which wildfire history can be interpreted from inertinite distribution in coal pillars: An example from the Late Permian, Kuznetsk Basin, Russia. International Journal of Coal Geology, 89(1), pp. 13–25. https://doi.org/10.1016/j.coal.2011.07.009

45. International Chronostratigraphic Chart. https://stratigraphy.org/ICSchart/ChronostratChart2023-04.pdf

46. Jaffey A.H., Flynn K.F., Glendenin L.E., Bentley W.C., Essling A.M. (1971). Precision Measurement of Half-Lives and Specific Activities of 235U and 238U. Physical Review C, 4(5), pp. 1889–1906. https://doi.org/10.1103/PhysRevC.4.1889

47. Jurigan I., Ricardi-Branco F., Neregato R., dos Santos T.J.S. (2019). A new tonstein occurrence in the eastern Paraná Basin associated with the Figueira coalfield (Paraná, Brazil): Palynostratigraphy and U-Pb radiometric dating integration. Journal of South American Earth Sciences, 96, 102377. https://doi.org/10.1016/j.jsames.2019.102377

48. Kazanskiy Yu.P., Van A.V. (1996). Using of tephrochronology for subdivision and correlation of Upper Paleozoic deposits of Kuzbass. Kuznetsk Basin – key region in stratigraphy of the Angarida Upper Paleozoic. Vol. 2. Ed. I.V. Budnikov. Novosibirsk: YuzhSibgeolkom, PSSS “Intergeo”, pp. 31–37. (In Russ.)

49. Kazantseva-Selezneva A.A. (1980). Permian paleonisks of Central Siberia. Paleontologicheskiy zhurnal = Paleontological journal, 1, pp. 95–103. (in Russ.)

50. Karpenko L.V., Prokushkin A.S. (2018). Genesis and History of the postglacial Evolution of Forest Bog in the Valley of the Dubches River. Sibirskiy lesnoy zhurnal = Siberian Journal of Forest Science, 5, pp. 33–44. (In Russ.) http://dx.doi.org/10.15372/SJFS20180503

51. Käßner A., Tichomirowa M., Lapp M., Leonhardt D., Whitehouse M., Gerdes A. (2021). Two‑phase late Paleozoic magmatism (~ 313–312 and ~ 299–298 Ma) in the Lusatian Block and its relation to large scale NW striking fault zones: evidence from zircon U–Pb CA–ID–TIMS geochronology, bulk rock‑ and zircon chemistry. International Journal of Earth Sciences, 110(8), pp. 2923–2953. https://doi.org/10.1007/s00531-021-02092-y

52. Kutygin R.V., Budnikov I.V., Sivchikov V.E. (2020). The main features of the Kasimovian – Gzhelian and Permian stratigraphy in the Siberian platform and adjacent fold belts. Prirodnye resursy Arktiki i Subarktiki, 25(4), pp. 5–29. (In Russ.) https://doi.org/10.31242/2618-9712-2020-25-4-1

53. Lavrenov P.F., Snezhko B.A., Shchigrev A.F., Dmitrieva N.V., Filippova N.E., Noskov Yu.S., Zeifert L.L. (2015). State geological map of the Russian Federation. Scale 1: 200000. 2nd ed. Kuzbass series. Sheet N-45-IX (Krapivinsky). Explanatory letter. Moscow: MF FSBI “VSEGEI”, 156 p. (In Russ.)

54. Lavrenov P.F., Snezhko B.A., Shchigrev A.F. et al. (2018). State geological map of the Russian Federation. Scale 1: 200,000 Kuzbass series. Sheet N-45-XVI (Osinovoye Pleso). Explanatory letter. Moscow: MF FSBI “VSEGEI”, 151 p. (In Russ.)

55. Legend of the Kuzbass Series of the State Geological Map of the Russian Federation (1999). Scale 1:200,000, Second edition. Novokuznetsk. (In Russ.)

56. Lezhnin A.I., Papin Yu.S. (1996). The Role of the First Regional Stratigraphic Scheme of Kuzbass in Establishing Large Stages of Coal Accumulation. Kuznetsk Basin – key region in stratigraphy of the Angarida Upper Paleozoic. Vol. 1. Ed. I.V. Budnikov. Novosibirsk: YuzhSibgeolkom, PSSS “Intergeo”, pp. 12–19. (In Russ.)

57. Lindsay R. (2018). Peatland (mire types): Based on Origin and Behavior of Water, Peat Genesis, Landscape Position, and Climate. The Wetland Book. C.M. Finlayson, G.R. Milton, R.C. Prentice, N.C. Davidson (Eds.). Berlin: Springer Science+Business Media, pp. 251–273. https://doi.org/10.1007/978-94-007-6173-5_279-1

58. Ludwig K.R. (2003). User’s manual for Isoplot/Ex version 3.00, a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publications, 4, 72 p.

59. Lyons P.C., Krogh T.E., Kwok Y.Y., Davis D.W., Outerbridge W.F., Evans, J.H.T. (2006). Radiometric ages of the Fire Clay tonstein [Pennsylvanian (Upper Carboniferous), Westphalian, Duckmantian]: a comparison of U-Pb zircon single-crystal ages and 40Ar/39Ar sanidine single-crystal plateau ages. International Journal of Coal Geology, 67, pp. 259–266. https://doi.org/10.1016/j.coal.2005.12.002

60. Mandelshtam M.I. (1956). Ostracods of coal-bearing deposits of the Kuznetsk Basin. Atlas of Guide Forms of Fossil Flora and Fauna of the Permian Deposits of the Kuznetsk Basin. Leningrad: Gostoptekhizdat, pp. 58–109. (In Russ.)

61. Marcisz K., Czerwiński S., Lamentowicz M., Łuców D., Słowiński M. (2022). How paleoecology can support peatland restoration. Past Global Changes Magazine, 30(1), pp. 12–13. https://doi.org/10.22498/pages.30.1.12

62. Mattinson J.M. (2005). Zircon U-Pb chemical abrasion (“CA-TIMS”) method: Combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chemical Geology, 220, pp. 47–66. https://doi.org/10.1016/j.chemgeo.2005.03.011

63. Metcalfe I., Crowley J.L., Nicoll R.S., Schmitz M. (2015). High-precision U-Pb CA-TIMS calibration of Middle Permian to Lower Triassic sequences, mass extinction and extreme climate-change in eastern Australian Gondwana. Gondwana Research, 28(1), pp. 61–81. https://doi.org/10.1016/j.gr.2014.09.002

64. Meyen S.V. (1982). The Carboniferous and Permian floras of Angaraland: (a synthesis). Biological Memoirs, 7(1), pp. 1–109.

65. Meyen S.V. (1990). Theoretical problems of paleobotany. Moscow: Nauka, 285 p. (In Russ.)

66. Meyen S.V., Afanasieva G.A., Betekhtina O.A. et al. (1996). The former USSR: Angara and surrounding marine basins. International Union of Geological Sciences Publication, 33, pp. 180–237.

67. Miller J., Matzel J., Miller C., Burgess S., Miller R. (2007). Zircon growth and recycling during the assembly of large, composite arc plutons. Journal of Volcanology and Geothermal Research, 167, pp. 282–299. https://doi.org/10.1016/j.jvolgeores.2007.04.019

68. Minikh A.V., Minikh M.G. (2009). Ichthyofauna of the Permian of European Russia. Saratov: Nauka, 244 p. (In Russ.)

69. Moore T.A., Shearer J.C. (2003). Peat/coal type and depositional environment – are they related? International Journal of Coal Geology, 56(34), pp. 233–252. https://doi.org/10.1016/S0166-5162(03)00114-9

70. Moore T.A., Moroeng O.M., Shen J., Esterle J.S., Pausch R.C. (2021). Using carbon isotopes and organic composition to decipher climate and tectonics in the Early Cretaceous: An example from the Hailar Basin, Inner Mongolia, China. Cretaceous Research, 118, 104674. https://doi.org/10.1016/j.cretres.2020.104674

71. Mori A.L.O., de Souza P.A., Marques J.C., Lopes R. da C. (2012). A new U-Pb zircon age dating and palynological data from a Lower Permian section of the southernmost Paraná Basin, Brazil: Biochronostratigraphical and geochronological implications for Gondwanan correlations. Gondwana Research, 21 (2–3), pp. 654–669. https://doi.org/10.1016/j.gr.2011.05.019

72. Neuburg M.F. (1948). Upper Paleozoic flora of the Kuznetsk Basin. Leningrad: Akad. nauk SSSR, 343 p. (In Russ.)

73. Neuburg M.F. (1960). Leafy mosses from the Permian deposits of Angarida. Moscow: Akad. nauk SSSR, 188 p. (In Russ.)

74. Neustrueva I.Yu. (1966). Upper Permian ostracods of the Kuznetsk Basin. Continental Upper Paleozoic and Mesozoic of Siberia and Central Kazakhstan. Moscow, Leningrad: Nauka, pp. 54–95. (In Russ.)

75. Novikov I.S., Cherkas O.V., Mamedov G.M., Simonov Y.G., Simonova T.Y., Nastavko V.G. (2013). Activity stages and tectonic division in the Kuznetsk Basin, Southern Siberia. Russian Geology and Geophysics, 54(3), pp. 324–334. https://doi.org/10.1016/j.rgg.2013.02.007

76. Oshurkova M.V. (1996). Paleoecological parallelism between the Angaran and Euramerican phytogeographic provinces. Review of Palaeobotany and Palynology, 90(1–2), pp. 99–111. https://doi.org/10.1016/0034-6667(95)00026-7

77. Paton Ch., Woodhead J.D., Hellstrom J.C., Herg J.M., Greig A., Maas R. (2010). Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction. Geochemistry, Geophysics, Geosystems, 11(3), pp. 1–36. https://doi.org/10.1029/2009gc002618

78. Papin Yu.S. (1969). Prosperous, normal and oppressed faunas of pelecypods of the Kolchugino Series of Kuzbass. Paleontologicheskiy zhurnal = Paleontological journal, (1), pp. 13–18. (In Russ.)

79. Papin Yu.S. (1973). Marked faunal layers in the sediments of the Kolchugin Series of Kuzbass. Geology and oil and gas potential of Western Siberia. Proceedings of the Tyumen Industrial Institute, 17, pp. 104–115. (In Russ.)

80. Pellenard P., Gand G., Schmitz M., Galtier J., Broutin J., Stéyer J.S. (2017). High precision U-Pb zircon ages for explosive volcanism calibrating the NW European continental Autunian stratotype. Gondwana Research, 51, pp. 118–136. https://doi.org/10.1016/j.gr.2017.07.014

81. Piilo S.R., Zhang H., Garneau M., Gallego-Sala A., Amesbury M.J., Välirant M.M. (2019). Recent peat and carbon accumulation following the Little Ice Age in northwestern Québec, Canada. Environmental Research Letters, 14(7), 075002. https://doi.org/10.1088/1748-9326/ab11ec

82. Posit team (2023). RStudio: Integrated Development Environment for R. Posit Software, PBC, Boston, MA. https://www.R-project.org/

83. R Core Team (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://posit.co/

84. Rodendorf B.B. (1961). Order Coleoptera. Coleoptera or beetles. Paleozoic insects of the Kuznetsk Basin. Ed. B.B. Rodendorf. Trudy PIN, 85. Moscow: Academy of Sciences of the USSR, pp. 393–469. (In Russ.)

85. Schoene B., Crowley J.L., Condon D.C., Schmitz M.D., Bowring S.A. (2006). Reassessing the uranium decay constants for geochronology using ID-TIMS U–Pb data. Geochim Cosmochim Acta, 70, pp. 426–445. https://doi.org/10.1016/j.gca.2005.09.007

86. Schwartz S.V. (2010). Geological report with calculation of reserves within the boundaries of the license of OAO “MC” Kuzbassrazrezugol “KEM 11672 TE” at the Taldinskoye coal deposit (2010). Kemerovo. (In Russ.)

87. Senderzon E.M., Shorin V.P., Shugurov V.F. (1966). Conditions of coal accumulation and some patterns of distribution of Kuzbass coals. Coal atlas of the Kuznetsk basin. Novosibirsk: Nauka, Sibirskoe otdelenie, pp. 160–172. (In Russ.)

88. Silantiev V.V. (2018). Permian Non-marine Bivalve Mollusks: Review of Geographical and Stratigraphic Distribution. Paleontological Journal, 52(7), pp. 707–729. https://doi.org/10.1134/S0031030118070092

89. Silantiev V.V., Сandra S., Urazaeva M.N. (2015). Systematics of Nonmarine Bivalve Mollusks from the Indian Gondwana Coal Measures (Damuda Group, Permian, India). Paleontological Journal, 49(12), pp. 1235–1274. https://doi.org/10.1134/s0031030115120114

90. Silantiev V., Carter J., Urazaeva M., Nourgalieva N., Nizamova A. (2020). Early Triassic Non-Marine Bivalves Utschamiella Ragozin, 1937 from the Kuznetsk Coal Basin: First Microstructural Data. Proc. 4th Kazan Golovkinsky Stratigraphic Meeting 2020 “Sedimentary Earth Systems: Stratigraphy, Geochronology, Petroleum Resources”. Bologna, Italy: Filodiritto International Proceedings, pp. 248–255.

91. Simas M.W., Guerra-Sommer M., Cazzulo-Klepzig M., Menegat R., Schneider Santos J.O., Fonseca Ferreira J.A., Degani-Schmidt I. (2012). Geochronological correlation of the main coal interval in Brazilian Lower Permian: Radiometric dating of tonstein and calibration of biostratigraphic framework. Journal of South American Earth Sciences, 39, pp. 1–15. https://doi.org/10.1016/j.jsames.2012.06.001

92. Slama J., Košler J., Condon D.J., Crowley J.L., Gerdes A., Hanchar J.M., Horstwood M.S.A., Morris G. A., Nasdala L., Norberg N., Schaltegger U., Schoene B., Tubrett M.N., Whitehouse M.J. (2008). Plešovice zircon — A new natural reference material for U–Pb and Hf isotopic microanalysis. Chemical Geology, 249(1–2), pp. 1–35. https://doi.org/10.1016/j.chemgeo.2007.11.005

93. Spizharskiy T.N. (1937). Ostracoda of the Kolchugin Formation of Coalbearing Sediments of the Kuznetsk Basin. Trudy TsNIGRI, (97), pp. 139–170. (In Russ.)

94. Spizharskiy T.N. (1939). Order Ostracoda. Shellfish crayfish. Atlas of guide forms of fossil faunas of the USSR. Permian system. Vol. 6. Leningrad: Gosgeolizdat, pp. 193–196. (In Russ.)

95. Stivrins N., Ozola I., Gałka M., Kuske E., Alliksaar T., Andersen T.J., Lamentowicz M., Wulf S., Reitalu T. (2017). Drivers of peat accumulation rate in a raised bog: impact of drainage, climate, and local vegetation composition. Mires and Peat, 19(08), pp. 1–19. https://doi.org/10.19189/MaP.2016.OMB.262

96. Stratigraphic Guide of Russia (2019). Approved by the ISC Bureau on October 18, 2005. Compiled by A.I. Zhamoida et al. St. Petersburg: VSEGEI, 96 p. (In Russ.)

97. Sytchevskaya E.K. (1999). Freshwater fish fauna from the Triassic of northern Asia. Proceedings of the international meeting Buckow, 1997. Mesozoic Fishes 2. Systematics and Fossil Record. G. Arratia, H.-P. Schultze (Eds.). München: Verlag Dr. Pfeil, pp. 445–468.

98. Thompson L.N., Finkelman R.B., Arbuzov S.I., French D.H. (2021). An unusual occurrence of ferroan magnesite in a tonstein from the Minusinsk Basin in Siberia, Russia. Chemical Geology, 568, 120131. https://doi.org/10.1016/j.chemgeo.2021.120131

99. Tichomirowa M., Käßner A., Sperner B., Lapp M., Leonhardt D., Linnemann U., Münker C., Ovtcharova M., Pfänder J.A., Schaltegger U., Sergeev S., von Quadt A. (2019). Dating multiply overprinted granites: the effect of protracted magmatism and fluid flow on dating systems (zircon U-Pb: SHRIMP/SIMS, LA-ICP-MS, CA-ID-TIMS; and Rb-Sr, Ar-Ar) – granites from the Western Erzgebirge (Bohemian Massif, Germany). Chemical Geology, 519, pp. 11–38. https://doi.org/10.1016/j.chemgeo.2019.04.024

100. Urazaeva M., Silantiev V. (2019). Permian Non-Marine Bivalve Fauna from Continental Deposits of the Dvina-Mezen Basin. Kazan Golovkinsky Stratigraphic Meeting 2019: Late Paleozoic Sedimentary Earth Systems: Stratigraphy, Geochronology, Petroleum Resources. Kazan: Kazan University Press, pp. 272–276.

101. Van A.V. (1968). The role of pyroclastic material in coal-bearing deposits of the Kuznetsk basin. Sovetskaya geologiya, (4), pp. 129–138. (In Russ.)

102. Van A.V., Kazanskiy Yu.P. (1985). Volcanic material in sediments and sedimentary rocks. Novosibirsk: Nauka, 128 p. (In Russ.)

103. Vakhrameev V.A., Dobruskina I.A., Zaklinskaya E.D., Meyen S.V. (1970). Paleozoic and Mesozoic floras of Eurasia and phytogeography of this time. Trudy Geologicheskogo Instituta, (208). Moscow: Nauka, 431 p. (In Russ.)

104. Volkova E.M., Pel’gunova L.A., Kochkina A.V. (2014). The dynamic of development of mires in karst depressions and accumulation of chemical elements in peat deposits. Izvestiya Tul’skogo gosudarstvennogo universiteta. Estestvennye nauki, (4), pp. 158–173. (In Russ.)

105. Wang J., Shao L.Y., Wang H., Spiro B., Large D. (2018). SHRIMP zircon U–Pb ages from coal beds across the Permian–Triassic boundary, eastern Yunnan, southwestern China. Journal of Palaeogeography, 7(2), pp. 117–129. https://doi.org/10.1016/j.jop.2018.01.002

106. Wiedenbeck M., Alle P., Corfu F., Griffin W.L., Meier M., Oberli F., Von Quadt A., Roddick J.C., Spiegel W. (1995). Three Natural Zircon Standards for U-TH-PB, LU-HF, Trace Element and Ree Analyses. Geostandards Newsletter, 19(1), pp. 1–23. https://doi.org/10.1111/j.1751-908x.1995.tb00147.x

107. Widmann P., Davies J.H.F.L., Schaltegger U. (2019). Calibrating chemical abrasion: its effects on zircon crystal structure, chemical composition and U-Pb age. Chemical Geology, 511, pp. 1–10. https://doi.org/10.1016/j.chemgeo.2019.02.026

108. Winston R.B. (1986). Characteristics features and compaction of plant tissues traced from permineralized peat to coal in Pennsylvanian coals (Desmoinesian) from the Illinois basin. International Journal of Coal Geology, 6(1), pp. 21–41. https://doi.org/10.1016/0166-5162(86)90023-6

109. Yarkov V.O. (1996). About the methods of stratigraphic division of the coal-bearing strata of Kuzbass. Kuznetsk Basin – key region in stratigraphy of the Angarida Upper Paleozoic. Vol. 1. Ed. I.V. Budnikov. Novosibirsk: YuzhSibgeolkom, PSSS “Intergeo”, pp. 3–5. (In Russ.)

110. Yuzvitsky A.Z. (2003). Kuznetsk coal Basin. Coal base of Russia. Coal basins and deposits of Western Siberia (Kuznetsk, Gorlovsky, ZapadpoSibirsky basins, deposits of the Altai Territory and the Republic of Altai). V. 2. Moscow: Geoinformtsentr, pp. 7–46. (In Russ.)

111. Zharinova V.V. (2021). Correlation of deposits of the Indus stage of Eurasia according to the conchostracan fauna. PALEOSTRAT-2020. Annual meeting (scientific conference) of the paleontology section of the MOIP and the Moscow Branch of the Paleontological Society of the Russian Academy of Sciences. Moscow: Borisyak Paleontological Institute RAS, pp. 30–31. (In Russ.)


Review

For citations:


Silantiev V.V., Gutak Ya.M., Tichomirowa M., Kulikova A.V., Felker A.S., Urazaeva M.N., Porokhovnichenko L.G., Karasev E.V., Bakaev A.S., Zharinova V.V., Naumcheva M.A. First radiometric dating of tonsteins from coal-bearing succession of the Kuznetsk Basin: U-Pb geochronology of the Tailugan Formation. Georesursy = Georesources. 2023;25(2):203-227. (In Russ.) https://doi.org/10.18599/grs.2023.2.15

Views: 262


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1608-5043 (Print)
ISSN 1608-5078 (Online)