The Formation Conditions of the Volga Basin Oil Shales in Relation to Their Metallogeny on Rhenium and Other Valuable Elements
https://doi.org/10.18599/grs.2024.2.3
Abstract
The Volga oil shales are located on the Russian platform and represent a potential non-traditional and promising source of rhenium and other valuable metals. Concentrations of rhenium at the level of industrial types of ores have been identified at the Perelyubskoe and Kotsebinskoe deposits. The complex of lithological and geochemical studies suggests that the metallogeny of the Volga oil shales is associated with the influence of volcanism and anoxic conditions during the sedimentation period. The main criteria have been identified by which high concentrations of rhenium in the Volga oil shales can be predicted: the content of organic carbon, molybdenum, and the DOPr indicator. Based on the analyzed data, promising layers have been identified for the Perelyubskoe and Kotsebinskoe deposits to detect industrial concentrations of rhenium.
About the Authors
V. S. IlyasovRussian Federation
Valeriy S. Ilyasov – Cand. Sci. (Geology and Mineralogy), Head of Drilling Operations Support
8b, 50 Let Oktyabrya St., Tyumen, 625048
V. N. Staroverov
Russian Federation
Vyacheslav N. Staroverov – Dr. Sci. (Geology and Mineralogy), Chief Researcher
70, Moskovskaya St., Saratov, 413503
V. N. Ilyasov
Russian Federation
Valeriy N. Ilyasov – General Director
11/15, Shelkovichnaya St., Saratov, 410017
References
1. Algeo T.J., Tribovillard N. (2009). Environmental analysis of paleoceanographic systems based on molybdenum–uranium covariation. Chemical Geology, 268(3–4), pp. 211–225. https://doi.org/10.1016/j. chemgeo.2009.09.001
2. Baryshnikova V.N., Bukina T.F., Eremin V.N., Ivanov A.V., Kuleva G.V., Troitskaya E.A., Yanochkina Z.A. (2004). Section of Upper Jurassic shalebearing deposits of the Volga basin (Dorsoplanites panderi zone). Saratov: Nauchnaya kniga, 110 p. (In Russ.)
3. Baturin G.N. (2017). Geochemistry of trace element in carbonaceous sediments from recent seas and oceans. Geochem. Int., 55, pp. 418–427. https://doi.org/10.1134/S0016702917050044
4. Bukina T.F. (2013). Sedimentogenesis and early lithogenesis of Upper Jurassic shale-bearing deposits in the central part of the Volga Basin. Saratov: Saratov University Press, 128 p. (In Russ.)
5. Bukina T.F., Kuleva G.V., Yanochkina Z.A., Baryshnikova V.I., Troitskaya E.A. (1985). Study of the shale-bearing strata in connection with the development of the legend for large-scale maps and correlation of sections of the Perelyubskoe and Kotsebinskoe deposits. Report. Saratov: Nizhnevolzhskgeology, Vol. 1, 148 p. (In Russ.)
6. Engalychev S.Yu. (2019). Rhenium and selenium in the upper Jurassic shale thickness of the section “Gorodischi” in the central part of the Volga shale basin. Lithosphere (Russia), 19(5), pp. 704–716. (In Russ.) https://doi. org/10.24930/1681-9004-2019-19-5-704-716
7. Galiakberov A., Zorina S., Maksyutova L., Dzhalmukhanova R., Zaripova G., Nikashin K. (2018). Toxicity of high-carbon sediments: case study from anoxic basins of the east European and West Siberian platforms. Advances in Devonian, Carboniferous and Permian Research: Stratigraphy, Environments, Climate and Resources: Proceedings of Kazan Golovkinsky Stratigraphic Meeting 2017. Bologna, Italy: Filodiritto Publisher, pp. 340–343.
8. Gavrilov Y.O. (1994). On the possible causes of accumulation of deposits enriched with organic matter, in connection with eustatic sea level fluctuations. Problems of Biosphere Evolution. Moscow: Nedra, pp. 305–311. (In Russ.)
9. Hade S., Soesoo A. (2014). Estonian graptolite argillites revisited: a future resource? Oil Shale, 31(1), pp. 4–18. https://doi.org/10.3176/oil.2014.1.02
10. Hatch J.R., Leventhal J.S. (1992). Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A. Chemical Geology, 99(1–3), pp. 65–82. https://doi.org/10.1016/0009-2541(92)90031-Y
11. Hints R., Soesoo A., Voolma M., Tarros S., Kallaste T., Hade S. (2014b). Centimetre-scale variability of redox-sensitive elements in Tremadocian black shales from the eastern Baltic Palaeobasin. Estonian Journal of Earth Sciences, 63(4), pp. 233–239. https://doi.org/10.3176/earth.2014.24
12. Hints R., Soesoo A., Hade S., Voolma M., Kallaste T., Tarros S. (2014a). Tremadocian black shales from eastern Baltic Palaeobasin – revisiting geochemical and sedimentological heterogeneity. 4th Annual Meeting of IGCP 591, Vol. 4, p. 40.
13. Ilyasov V.S. (2020). Conditions of formation of Upper Jurassic oil shales of the Volga basin on the example of the Saratov Volga region deposits. Cand. Geol. and Mineral. Sci. Diss. Moscow, 237 p. (In Russ.)
14. Ilyasov V.S., Staroverov V.N., Vorobieva E.V., Reshetnikov M.V. (2017). Geochemical characteristics of Volga shale in connection with the prediction of industrial concentrations of rhenium. Izvestiya of Saratov University. Earth Sciences, 17(3), pp. 165–170. (In Russ.)
15. Ilyasov V.S., V.N. Staroverov, V.N. Ilyasov (2022). Conditions of formation and prospects for the development of Upper Jurassic oil shales of the Volga basin. Saratov: NVNIIGG, 182 p. (Proc. NVNIIGG). (In Russ.)
16. Kremenetsky A.A. (2000). Plant on a volcano. Nauka i zhizn, 11, pp. 24–25. (In Russ.)
17. Ovchinnikov L.N. (1990). Approximate geochemistry. Moscow: Nedra, 348 p. (In Russ.)
18. Rogov M.A. (2013). Ammonites and infra-zonal dismemberment of the Dorsoplanites Panderi zone (Volgian Stage, Upper Jurassic) of the European part of Russia. Doklady Academy of Sciences, 431(4), pp. 435–440. (In Russ.) Rustamov M.I. (2005). Problems of ophiolite roots in the geodynamic model of the development of the Mesotethys of the Lesser Caucasus. The third international conference “Mafic-ultramafic complexes of folded regions and related deposits”. Baku, pp. 157–160. (In Russ.)
19. Samorodov A.V., Iovlev V.P., Kabokin A.N., Vnukov A.V., Khrustaleva G.K., Gilev D.K., Aleshin V.I., Pugachev A.I. (1983). Report on the results of search and evaluation work on oil shales within the Perelyub-Blagodatovskaya area. Saratov: Nizhnevolzhskgeology. (In Russ.)
20. Samoylov A.G., Engalychev S.Yu., Zozyrev N.Yu., Shchepetov D.A., Ilyasov V.N. (2018). Rhenium-bearing Upper Jurassic oil shales of the central part of the Volga shale basin. Regional geology and metallogeny, 75, pp. 67–78. (In Russ.)
21. Savko A.D., Manukovsky S.V., Mizin A.I. et al. (2001). Lithology and facies of Donets deposits of the Voronezh anteclise. Proceedings of the Research Institute of Geology of Voronezh State University, Is. 3, 201 p. (In Russ.)
22. State balance of mineral reserves of the Russian Federation on January 1, 2019 (2019). Issue 28. Dispersed elements. Moscow: ROSGEOFOND, pp. 28–31. (In Russ.)
23. Voolma M. Soesoo A., Hade S., Hints R., Kallaste T. (2013). Geochemical heterogeneity of Estonian graptolite argillite. Oil Shale, 30(3), pp. 377–401. https://doi.org/10.3176/oil.2013.3.02
24. Vyalov V., Dyu T., Nastavkin A., Shishov E. (2024). Rhenium and Related Valuable Metals in the Oil Shales of the Volga Basin. Solid Fuel Chemistry, 58(1), pp. 46–50. https://doi.org/10.3103/S0361521924010105
25. Vyalov V.I., Balakhonova A.S., Larichev A.I., Bogomolov A.Kh. (2013). Rhenium in Dictyonema Shales of the Baltic Basin. Bulletin of Moscow University. Geology, (2), pp. 63–68. (In Russ.)
26. Yudovich Ya.E., Ketris M.P. (1988). Geochemistry of black shales. Leningrad: Nauka, 272 p. (In Russ.)
27. Yudovich Ya.E., Ketris M.P. (2011). Geochemical indicators of lithogenesis (lithological geochemistry). Syktyvkar: Geoprint, 742 p. (In Russ.)
Review
For citations:
Ilyasov V.S., Staroverov V.N., Ilyasov V.N. The Formation Conditions of the Volga Basin Oil Shales in Relation to Their Metallogeny on Rhenium and Other Valuable Elements. Georesursy = Georesources. 2024;26(2):3–16. (In Russ.) https://doi.org/10.18599/grs.2024.2.3