Preview

Georesources

Advanced search

Morphometric Approach to Quantitative Assessment of Thickness of Sediments Meandering Paleochannels of the Tyumen Formation of the West Siberian Oil and Gas Basin

https://doi.org/10.18599/grs.2024.3.15

Abstract

The article is devoted to implementation of morphometric analysis in process of qualitative and quantitative dynamic interpretation of seismic data. Essence of new approach is to predict reservoir capacity of channel genesis based on established dependencies between parameters “width of channel formation belt” and “thickness of channel deposits”. Interpretation of meandering river system demonstrates on example of one productive interval identified in the Tyumen formation. This article presents three variants of dependencies, two of which are the author’s and published for the first time. Authors have developed a program code in Python to automate morphometric analysis. Ranges of values predicted on basis of dependencies are correlated with results of quantitative dynamic analysis performed by inversion transformations, as well as with general ideas about sediment thickness of both modern river systems and paleosystems in geological formations of different ages.

About the Authors

T. V. Olneva
Gazpromneft Group of Companies
Russian Federation

Tatyana V. Olneva – Dr. Sci. (Geology and Mineralogy), Leading expert on seismic and geological interpretatio

3–5 Pochtamtskaya str., St. Petersburg, 190000



M. Yu. Oreshkova
Empress Catherine II Saint Petersburg Mining University
Russian Federation

Maria Yu. Oreshkova – Postgraduate student, Department of Geophysics

21 Line, 2 Vasilevsky Island, St. Petersburg, 199106



A. V. Butorin
Gazpromneft Group of Companies; St. Petersburg State University
Russian Federation

Alexandr V. Butorin – Cand. Sci. (Geology and Mineralogy), Associate Professor; Head of seismic discipline

3–5 Pochtamtskaya str., St. Petersburg, 190000



A. S. Egorov
Empress Catherine II Saint Petersburg Mining University
Russian Federation

Alexey S. Egorov – Dr. Sci. (Geology and Mineralogy), Professor, Head of the Department of Geophysics

21 Line, 2 Vasilevsky Island, St. Petersburg, 199



References

1. Butorin A.V., Vinokhodov M.A., Zinnurova R.R., Mityaev M.Yu., Onegov A.V., Sharifullin I.F. (2015). Assessment of the potential of the Tyumen suite within the Noyabrsk region of Western Siberia. Neftyanoe khozyaystvo = Oil industry, 12, pp. 41–43. (In Russ.)

2. Durkin P.R., Boyd R.L., Hubbard S.M., Shultz A.W., Blum M.D. (2017). Three-dimensional reconstruction of meander-belt evolution, Cretaceous McMurray Formation, Alberta foreland basin, Canada. Journal of Sedimentary Research, 87(10), pp. 1075–1099. https://doi.org/10.2110/jsr.2017.59

3. Collinson, J.D. (1978). Vertical sequence and sand body shape in alluvial. Fluvial Sedimentology (Edited by A.D. Miall). Calgary, pp. 577–586.

4. Fedorova M.D. (2016). Tyumen suite. Methodology for creating conceptual geological models. Oil&Gas Journal Russia, 11, pp. 60–63. (In Russ.)

5. Fielding, C.R., Crane, R.C. (1987). An application of statistical modeling to the prediction of hydrocarbon recovery factors in fluvial reservoir sequences. Special Publications of SEPM, (SP39), pp. 321–327. https://doi.org/10.2110/pec.87.39.0321

6. Gibling M.R. (2006). Width and thickness of fluvial channel bodies and valley fills in the geological record: A literature compilation and classification. Journal of Sedimentary Research, 76(5), pp. 731–770. https://doi.org/10.2110/jsr.2006.060

7. Gladysheva, Ya.I. (2012). Analysis of Middle Jurassic deposits in the north of Western Siberia to assess the risk of deep well drilling. Tyumen: Tyumen State Oil and Gas University, 84 p. (In Russ.)

8. Gurari F.G. (2005). Geological structure and oil and gas potential of the Lower – Middle Jurassic of the West Siberian province. Novosibirsk: Nauka, 156 p. (In Russ.)

9. Isakova T. G., Persidskaya A. S., Khotylev O. V., Kotochkova Yu. A., Egorova A. D., Dyakonova T. F., Mozgovoy A. S., Churkina V. V., Kozakov S. V., Kozhevnikova N. V., Livaev R. Z., Druchin V. S., Belov N. V., Kalmykov G. A. (2022). Typification of Tyumen Formation Deposits by the Degree of Hydrodynamic Activity of Sedimentation Conditions in the Creation of a Petrophysical Model and Differentiated Interpretation of Well Geophysical Surveys. Georesursy = Georesources, 24(2), pp. 172–185. (In Russ.) https:// doi.org/10.18599/grs.2022.2.16

10. Kontorovich A.E., Kontorovich V.A., Ryzhkova S.V. et al., (2013). Jurassic paleogeography of the West Siberian sedimentary basin. Russian Geology and Geophysics, 54(8), pp. 747–779. https://doi.org/10.1016/j.rgg.2013.07.002

11. Kontorovich A. E., Nesterov I. I., Salmanov F. K. (1975). Geology of oil and gas of Western Siberia. Moscow: Nedra, 680 p. (In Russ.)

12. Leopold, L.B., Wolman, M.G. (1957). River channel patterns: Braided, meandering, and straight. Geol. Survay Prof. Paper 282. Washington. https:// doi.org/10.3133/pp282B

13. Nesterov I. I. (1979). A new type of oil and gas reservoir. Geologiya nefti i gaza= Geology of oil and gas, 10, pp. 26–29. (In Russ.)

14. Olneva T. V., Zhukovskaya E. A., Oreshkova M. Yu., Kuzmin D. A. (2022). Diagnostics of morphogenetic types of paleochannels based on seismic image parameterization. Geofizika, 2, pp. 17–25. (In Russ.) https:// doi.org/10.34926/geo.2022.84.60.001

15. Olneva T. V. (2017). Seismofacies analysis. Images of geological processes and phenomena in a seismic image. Izhevsk: Institute of Computer Research, 152 p. (In Russ.)

16. Olneva T. V., Zhukovskaya E. A. (2018). Method for predicting morphometric parameters of channel bodies (paleochannels). Patent No. 2672766 C1 Russian Federation, IPC G01V 1/28, G01V 9/00. declared 08.02.2018: publ. 11/19/2018; applicant Gazpromneft NTC LLC. (In Russ.)

17. Reading H. G., Collinson J. D., Allen F. A., Elliott T., Schreiber B. N., Johnson G. D., Baldwin K. T., Sellwood B. W., Jenkins H. K., Stowe D. A. V., Edwards M., Mitchell A. H. G. (1990). Sedimentary environments and facies: Volume 1. Moscow: Mir, 352 p. (In Russ.)

18. Reynolds A.D. (1999). Dimensions of Paralic Sandstone Bodies. AAPG Bulletin, 83(2), pp. 211–229. https: //doi.org/10.1306/00AA9A48-1730-11D7-8645000102C1865D

19. Strong P.C., Wood G.R., Lang S.C., Jollands A., Karalaus E., Kassan J. (2002). High resolution palaeogeographic mapping of the fluvial-lacustrine Patchawarra Formation in the Cooper Basin, South Australia. The APPEA Journal, 42(1), pp. 65–81. https://doi.org/10.1071/AJ01005

20. Surkov V. S. (1986). Megacomplexes and deep structure of the earth’s crust of the West Siberian plate. Moscow: Nedra, 149 p. (In Russ.)

21. Sysoev A. P., Zaitsev S. A. (2023). Some issues of dynamic wave field inversion. Geologiya i mineral’no-syr’evye resursy Sibiri = Geology and mineral resources of Siberia, 3, pp. 52–58. (In Russ.) https://doi.org/10.20403/2078-0575-2023-3-52-58

22. Vassoevich N.B. (1983). Handbook of lithology. Moscow: Nedra, 509 p. (In Russ.)


Review

For citations:


Olneva T.V., Oreshkova M.Yu., Butorin A.V., Egorov A.S. Morphometric Approach to Quantitative Assessment of Thickness of Sediments Meandering Paleochannels of the Tyumen Formation of the West Siberian Oil and Gas Basin. Georesursy = Georesources. 2024;26(3):143-150. (In Russ.) https://doi.org/10.18599/grs.2024.3.15

Views: 611


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1608-5043 (Print)
ISSN 1608-5078 (Online)