Preview

Georesources

Advanced search

A new state-of-the-art technique for textural and structural microimager data analysis using deep learning algorithms

https://doi.org/10.18599/grs.2025.3.22

Abstract

Borehole formation microimagers are a powerful tool for analyzing complex reservoirs, providing detailed information about the structural and textural features of formations. The development of state-of-the-art interpretation techniques can optimize existing approaches to microimager data analysis, enable the extraction of new object-level information, and significantly enhance the efficiency and quality of data interpretation. This study proposes a novel workflow for fullbore formation microimager data analysis based on processing a large and unique dataset using machine learning and computer vision techniques. The developed algorithms facilitate the automatic preprocessing of borehole microimager data and their automated structural and textural decomposition. The accuracy of object segmentation by convolutional deep neural networks exceeds 90%, while computer vision algorithms enable the analysis of the sizes, shapes, orientations, and topology of detected objects. The application areas of the proposed methodology include sedimentological analysis (thin-bed analysis); enhancement of core study workflow and formation tester evaluations (detailed characterization of reservoirs in intervals not covered by core samples); and advanced information for processing geological and geophysical data (reservoir modeling using deterministic approaches, distribution criteria for stochastic modeling and determining petrophysical parameters with high reliability).

About the Authors

G. A. Kossov
LLC "STISS"
Russian Federation


V. V. Abashkin
LLC "STISS"
Russian Federation


S. S. Egorov
LLC "STISS"
Russian Federation


D. O. Makienko
LLC "STISS"
Russian Federation


V. A. Gaeva
LLC "STISS"
Russian Federation


References

1. Agarap, A.F. (2019). Deep Learning using Rectified Linear Units (ReLU). ArXiv preprint arXiv:1803.08375. https://doi.org/10.48550/arXiv.1803.08375

2. Azim, R.A. (2021). Estimation of fracture network properties from FMI and conventional well logs data using artificial neural network. Upstream Oil and Gas Technology, 7, pp. 100044.

3. Bradski, G. (2000). The opencv library. Dr. Dobb’s Journal: Software Tools for the Professional Programmer, 25, pp. 120–123.

4. Canny, J. (1986). A computational approach to edge detection. IEEE Transactions on pattern analysis and machine intelligence, pp. 679–698.

5. Chang Li, Liqiang Sima, Guoqiong Che, Wang Liang, Anjiang Shen, Qingxin Guo, Bing Xie (2020). Vug and fracture characterization and gas production prediction by fractals: Carbonate reservoir of the Longwangmiao Formation in the Moxi-Gaoshiti area, Sichuan Basin. Interpretation, 8(3), pp. 159-171. https://doi.org/10.1190/INT-2019-0260.1

6. Chen, T., Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. The 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, San Francisco California USA, pp. 785–794. https://doi.org/10.1145/2939672.2939785

7. Chollet, F. (2021). Deep learning with Python. Simon and Schuster, pp. 478.

8. Cortes, C. (1995). Support-Vector Networks. Machine Learning, 20, pp. 273–297.

9. De Ville, B. (2013). Decision trees. WIREs Computational Stats, 5, pp. 448–455. https://doi.org/10.1002/wics.1278

10. Fathi, E., Carr, T.R., Faiq, M.A., Panetta, B., Kumar, A., Carney, B.J. (2022). High-quality fracture network mapping using high frequency logging while drilling (LWD) data: MSEEL case study. Machine Learning with Applications, 10, pp. 100421. https://doi.org/10.1016/j.mlwa.2022.100421

11. Fix, E. (1985). Discriminatory analysis: nonparametric discrimination, consistency properties. USAF school of Aviation Medicine.

12. Freund, Y., Schapire, R.E. (1995). A desicion-theoretic generalization of on-line learning and an application to boosting, in: Vitányi, P. (Ed.), Computational Learning Theory, Lecture Notes in Computer Science. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 23–37. https://doi.org/10.1007/3-540-59119-2_166

13. Friedman, J.H. (2001). Greedy function approximation: a gradient boosting machine. Annals of statistics, pp. 1189–1232.

14. Gabor, D. (1946). Theory of communication. Part 1: The analysis of information. Journal of the Institution of Electrical Engineers - Part III: Radio and Communication Engineering, 93, pp. 429–441. https://doi.org/10.1049/ji-3-2.1946.0074

15. Geurts, P., Ernst, D., Wehenkel, L. (2006). Extremely randomized trees. Mach Learn, 63, pp. 3–42. https://doi.org/10.1007/s10994-006-6226-1

16. Hilt, D.E., Seegrist, D.W. (1977). Ridge, a computer program for calculating ridge regression estimates. Department of Agriculture, Forest Service, Northeastern Forest Experiment.

17. John, G.H., Langley, P. (2013). Estimating Continuous Distributions in Bayesian Classifiers. arXiv preprint arXiv:1302.4964. https://doi.org/10.48550/arXiv.1302.4964

18. Kharitontseva, P., Gardiner, A., Tugarova, M., Chernov, D., Maksimova, E., Churochkin, C., Rukavishnikov, V. (2021). An Integrated Approach for Formation Micro-Image Rock Typing Based on Petrography Data: A Case Study in Shallow Marine Carbonates. Geosciences, 11(6), pp. 235. https://doi.org/10.3390/geosciences11060235

19. Kingma, D.P., Ba, J. (2017). Adam: A Method for Stochastic Optimization. https://doi.org/10.48550/arXiv.1412.6980

20. Kohonen, T. (2013). Essentials of the self-organizing map. Neural Networks, 37, pp. 52–65. https://doi.org/10.1016/j.neunet.2012.09.018

21. Köpüklü, O., Babaee, M., Hörmann, S., Rigoll, G. (2019). Convolutional Neural Networks with Layer Reuse. https://doi.org/10.48550/arXiv.1901.09615

22. Li, X., Shen, J., Zhu, Z., Wang, L., Li, Z. (2016). Fracture extraction from FMI based on multiscale mathematical morphology, SEG International Exposition and Annual Meeting, pp. SEG-2016.

23. McCallum, A., Nigam, K. (1998). A comparison of event models for naive bayes text classification, in: AAAI-98 Workshop on Learning for Text Categorization. Madison, WI, pp. 41–48.

24. Mohammad Faiq Adenan, Fathi, E., Carr, T., Panetta, B. (2023). Machine learning-based workflow for identifying fractures and baffles from Formation Micro Imager (FMI) log: A practical application in Illinois Basin Decatur Project (IBDP). SEG/AAPG International Meeting for Applied Geoscience & Energy. https://doi.org/10.1190/image2023-3916031.1

25. Otsu, N. (1975). A threshold selection method from gray-level histograms. Automatica, 11, pp. 23–27.

26. Ponziani, M., Slob, E., Luthi, S., Bloemenkamp, R., Le Nir, I. (2013). Fracture characterization from Formation MicroImager data. 75th EAGE Conference & Exhibition incorporating SPE EUROPEC 2013, European Association of Geoscientists & Engineers, pp. 348.

27. Qifeng Sun, Naiyuan Su, Faming Gong, Qizhen Du. (2023). Blank Strip Filling for Logging Electrical Imaging Based on Multiscale Generative Adversarial Network. Processes, 11(6), pp. 1709. https://doi.org/10.3390/pr11061709

28. Rahman, M.A., Wang, Y. (2016). Optimizing intersection-over-union in deep neural networks for image segmentation. The International symposium on visual computing, Springer, pp. 234–244.

29. Rennie, J.D., Shih, L., Teevan, J., Karger, D.R. (2003). Tackling the poor assumptions of naive bayes text classifiers. Proceedings of the 20th International Conference on Machine Learning (ICML-03), pp. 616–623.

30. Rigatti, S.J. (2017). Random forest. Journal of Insurance Medicine, 47, pp. 31–39.

31. Ronneberger, O., Fischer, P., Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation, in: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (Eds.), Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Lecture Notes in Computer Science. Springer International Publishing, Cham, pp. 234–241. https://doi.org/10.1007/978-3-319-24574-4_28

32. Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and organization in the brain. Psychological review, 65, pp. 386.

33. Sara, U., Akter, M., Uddin, M.S. (2019). Image quality assessment through FSIM, SSIM, MSE and PSNR—a comparative study. Journal of Computer and Communications, 7, pp. 8–18.

34. Shafiabadi, M., Kamkar-Rouhani, A., Riabi, S.R.G., Kahoo, A.R., Tokhmechi, B. (2021). Identification of reservoir fractures on FMI image logs using Canny and Sobel edge detection algorithms. Oil & Gas Science and Technology–Revue d’IFP Energies nouvelles, 76, pp. 10.

35. Tahmasebi, P. (2018). Multiple point statistics: a review. Handbook of mathematical geosciences: Fifty years of IAMG, pp. 613–643.

36. Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society Series B: Statistical Methodology, 58, pp. 267–288.

37. Walker, S.H., Duncan, D.B. (1967). Estimation of the probability of an event as a function of several independent variables. Biometrika, 54, pp. 167–179.

38. Ye, S.-J., Rabiller, P. (2000). A new tool for electro-facies analysis: multi-resolution graph-based clustering. The SPWLA Annual Logging Symposium, SPWLA, pp. SPWLA-2000.

39. Yu, L., Li, Z., Xu, M., Gao, Y., Luo, J., Zhang, J. (2022). Distribution-Aware Margin Calibration for Semantic Segmentation in Images. Int J Comput Vis, 130, pp. 95–110. https://doi.org/10.1007/s11263-021-01533-0

40. Zou, H., Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society Series B: Statistical Methodology, 67, pp. 301–320.

41.


Review

For citations:


Kossov G.A., Abashkin V.V., Egorov S.S., Makienko D.O., Gaeva V.A. A new state-of-the-art technique for textural and structural microimager data analysis using deep learning algorithms. Georesursy = Georesources. https://doi.org/10.18599/grs.2025.3.22

Views: 86


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1608-5043 (Print)
ISSN 1608-5078 (Online)