Preview

Georesources

Advanced search

Effect of gas hydrates on physical properties of permafrost

https://doi.org/10.18599/grs.2025.3.8

Abstract

Permafrost stores large amounts of natural gas in free and hydrate (clathrate) forms. Intrapermafrost gas hydrates were revealed in frozen core samples recovered from test, exploration, and production wells in the Arctic oil and gas fields. Being similar to ice in many respects, gas hydrates can be mute for geophysical surveys. Meanwhile, laboratory experiments show that the presence of a gas hydrate component in pore moisture affects considerably some parameters of frozen sediments, as well as processes in evolving permafrost. Hydrate-bearing permafrost has a lower thermal conductivity and permeability but a higher geomechanic strength than hydrate-free frozen ground. Gas hydrates also influence some geophysical variables, such as electrical resistivity which becomes higher at higher hydrate contents.

Accumulation of gas hydrates changes the relative percentages of pore moisture components (ice-hydrate-liquid water) in systems comprising ice, free gas, and gas hydrates, which has bearing on the physical properties of permafrost. The presence of gas hydrates increases the strength and resistivity of permafrost and, on the other hand, tends to reduce its permeability and the rates of heat and mass transfer.

About the Authors

E. M. Chuvilin
Skolkovo Institute of Science and Technology
Russian Federation

Evgeny M. Chuvilin – Cand. Sci. (Geology and Mineralogy), Associate Professor, Leading Research Scientist, Center for Petroleum Science and Engineering

11, Sikorskogo st., Skolkovo Information Center, Moscow, 121205



B. A. Bukhanov
Skolkovo Institute of Science and Technology; Sadovsky Institute of Geospheres Dynamics of the Russian Academy of Sciences
Russian Federation

Boris A. Bukhanov – Cand. Sci. (Geology and Mineralogy), Senior Research Scientist, Center for Petroleum Science and Engineering

11, Sikorskogo st., Skolkovo Information Center, Moscow, 121205



S. I. Grebenkin
Skolkovo Institute of Science and Technology
Russian Federation

Sergey I. Grebenkin – Cand. Sci. (Geology and Mineralogy), Research Scientist, Center for Petroleum Science and Engineering

11, Sikorskogo st., Skolkovo Information Center, Moscow, 121205



M. V. Zhmaev
Skolkovo Institute of Science and Technology; Sadovsky Institute of Geospheres Dynamics of the Russian Academy of Sciences
Russian Federation

Maksim V. Zhmaev – Cand. Sci. (Engineering), Engineer, Center for Petroleum Science and Engineering

11, Sikorskogo st., Skolkovo Information Center, Moscow, 121205



References

1. Agalakov S.E. (1997). Gas hydrates in the Turonian deposits in the north of Western Siberia. Geologiya Nefti i Gaza, 3, pp. 16–21. (In Russ.)

2. ASTM G57-20 (2020). Standard Test Method for Measurement of Soil Resistivity Using the Wenner Four-Electrode Method. https://doi.org/10.1520/G0057-20

3. Boswell R., Collett T.S., Yamamoto K., Okinaka N., Hunter R., Suzuki K., Tamaki M., Yoneda J., Itter D., Haines S.S., Myshakin E., Moridis G. (2022). Scientific results of the Hydrate-01 Stratigraphic Test Well Program, Western Prudhoe Bay Unit, Alaska North Slope. Energy & Fuels, 36(10), pp. 5167−5184. https://doi.org/10.1021/acs.energyfuels.2c00327

4. Brovka A.G., Romanenko I.I. (2010). Devices for studying thermophysical characteristics and phase composition of water in rocks under increased static loads. Gornaya Mekhanika i Mashinostroenie, 1, pp. 83−88. (In Russ.)

5. Bukhanov B. A., Chuvilin E.M., Mukhametdinova A.Z., Sokolova N.S., Afonin M.Y., Istomin V.A. (2022). Estimation of residual pore water content in hydrate-bearing sediments at temperatures below and above 0 °C by NMR. Energy & Fuels, 36(24), pp. 14789–14801. https://doi.org/10.1021/acs.energyfuels.2c03089

6. Chersky N.V., Kurenchanin V.K., Skuba V.N., Tsarev V.P. (1973) Research and recommendations for the development of mineral resources in the northern and eastern regions of the USSR. Part 1. Prospects for Searching for Gas Hydrate Deposits. Yakutsk: Yakut Book Publishing, 116 p. (In Russ.)

7. Chong, Z.R., Yang, S.H.B., Babu, P., Linga, P., Li, X.-S. (2016). Review of natural gas hydrates as an energy resource: Prospects and challenges. Applied Energy, 162, pp. 1633−1652.

8. Chuvilin E., Bukhanov B. (2017). Effect of hydrate formation conditions on thermal conductivity of gas-saturated sediments. Energy & Fuels, 31(5), pp. 5246−5254. https://doi.org/10.1021/acs.energyfuels.6b02726

9. Chuvilin E., Bukhanov B. (2019). Thermal conductivity of frozen sediments containing self-preserved pore gas hydrates at atmospheric pressure: An experimental study. Geosciences, 9(2), 65. https://doi.org/10.3390/geosciences9020065

10. Chuvilin E., Davletshina D. (2018). Formation and Accumulation of Pore Methane Hydrates in Permafrost: Experimental Modeling. Geosciences, 8(12). https://doi.org/10.3390/geosciences8120467

11. Chuvilin E., Davletshina D., Bukhanov B., Grebenkin S., Pankratova E. (2023). Thermal conductivity variations in frozen hydrate-bearing sand upon heating and dissociation of pore gas hydrate. Geosciences, 13, 316. https://doi.org/10.3390/geosciences13100316

12. Chuvilin E., Ekimova V., Davletshina D., Sokolova N., Bukhanov B. (2020). Evidence of gas emissions from permafrost in the Russian Arctic. Geosciences, 10, 383. https://doi.org/10.3390/geosciences10100383

13. Chuvilin E.M., Bukhanov B.A. (2014). Changes in thermal conductivity of gas-saturated sediments during hydrate formation and freezing-thawing. Part 1. Research methods. Earth’s Cryosphere, 18(1), pp. 70–76. (In Russ.)

14. Chuvilin E.M., Davletshina D.A., Lupachik M.V. (2019). Hydrate formation in frozen and thawing methane-saturated sediments. Earth’s Cryosphere, 23(2), pp. 50–61. (In Russ.)

15. Chuvilin E.M., Grebenkin S.I. (2015). Experimental assessment of gas permeability of gas-saturated sediments during hydrate formation and freezing. Earth’s Cryosphere, 19(2), pp. 67–74. (In Russ.)

16. Chuvilin E.M., Grebenkin S.I., Zhmaev M.V. (2021). Gas permeability of sandy sediments: effects of phase changes in pore ice and gas hydrates. Energy and Fuels, 8, pp. 7874–7882. https://doi.org/10.1021/acs.energyfuels.1c00366

17. Chuvilin E.M., Guryeva O.M. (2009). Experimental study of CO2 hydrate formation in the pore space of freezing and frozen sediments. Earth’s Cryosphere, 13(3), pp. 70–79. (In Russ.)

18. Chuvilin E.M., Istomin V.A. (2012). Temperature dependence of the equilibrium pore water content in gas hydrate contained sediments. In: Proc. 10th Int. Conf. on Permafrost (Salekhard, June 25–29, 2012). Yamal-Nenets Autonomous District, Russia, vol. 2, p. 57–60.

19. Chuvilin E.M., Yakushev V.S., Perlova E.V. (2000). Gas and possible gas hydrates in the permafrost of Bovanenkovo gas field, Yamal Peninsula, West Siberia. Polarforschung, 68, pp. 215–219.

20. Collett T.S., Lee M.W., Agena W.F., Miller J.J., Lewis K.A., Zyrianova M.V., Boswell R., Inks T.L. (2011). Permafrost associated natural gas hydrate occurrences on the Alaskan North Slope. Mar. Pet. Geol., 28, pp. 279−294. https://doi.org/10.1016/j.marpetgeo.2009.12.001

21. Dallimore S.R., Collett T.S. (1995). Intrapermafrost gas hydrates from a deep core hole in the Mackenzie Delta, Northwest Territories, Canada. Geology, 23, pp. 527–530. https://doi.org/10.1130/0091-7613(1995)0232.3.CO;2

22. Dallimore S.R., Uchida T., Collett T.S. (1999). Scientific Results from JAPEX/JNOC/GSC Mallik 2L-38 Gas Hydrate Research Well, Mackenzie Delta, Northwest Territories, Canada. Ottawa – Ontario: Natural Resources Canada, 403 p. https://doi.org/10.4095/210723

23. Davletshina D.A., Chuvilin E.M. (2020). Experimental assessment of the possibility of gas hydrate formation in fine-grained soils at negative temperatures. Earth’s Cryosphere, 24(4), pp. 25–33. (In Russ.)

24. Ginsburg G.D., Novozhilov A.A. (1997). On hydrates in the depths of the Messoyakha field. Gazovaya Promyshlennost, 2, pp. 19−21. (In Russ.)

25. Grebenkin S.I., Chuvilin E.M., Zhmaev M.V., Malik A.A. (2024) Experimental assessment of changes in geophysical characteristics of gas-saturated sandy rocks during ice and hydrate formation. Proc. First Russian Gas Hydrate Conference “Gas hydrates – the energy of the future”, Listvyanka, Baikal, pp. 99−103. (In Russ.) https://doi.org/10.24412/cl-37274-2024-1-99-103

26. Istomin V.A., Yakushev V.S. (1992). Gas hydrates in natural conditions. Moscow: Nedra, 235 p. (In Russ.)

27. Li B., Sun Y., Guo W., Shan X., Wang P., Pang Sh., Jia R., Zhang G. (2017). The mechanism and verification analysis of permafrost-associated gas hydrate formation in the Qilian Mountain, Northwest China. Marine and Petroleum Geology, 86, pp. 787–797. https://doi.org/10.1016/j.marpetgeo.2017.05.036

28. Makogon Yu.F. (1985) Gas hydrates, prevention of their formation and use. Moscow: Nedra, 232 p. (In Russ.)

29. Makogon Yu.F., Omelchenko R.Yu. (2012). Messoyakha – gas hydrate deposit, role and significance. Geologiya i Polez. Iskopaemye Mirovogo okeana, 3, pp. 5–19. (In Russ.)

30. Matveeva T.V., Logvina E.A., Nazarova O.V. (2024). Gas hydrates of water areas: methods and results of resource assessments. Geologiya Nefti i Gaza, 3, pp. 81−96. (In Russ.) https://doi.org/10.47148/0016-7894-2024-3-81-96.

31. Max D.M., Johnson A.H., Dillon W.P. (2013). Natural gas hydrate − Arctic Ocean deepwater resource potential. Dordrecht: Springer, 113 p. https://doi.org/10.1007/978-3-319-02508-7

32. Max M. (2000). Natural Gas Hydrate: In Oceanic and Permafrost Environments. Dordrecht: Springer, 419 p. https://doi.org/10.1007/978-94-011-4387-5

33. Ruppel C. (2015). Permafrost-associated gas hydrate: Is it really approximately 1% of the global system? J. Chem. Eng. Data, 60(2), pp. 429−436. https://doi.org/10.1021/je500770m

34. Stern L.A., Kirby S.H., Durham W.B. (1996). Peculiarities of methane clathrate hydrate formation and solid-state deformation, and the associated superheating of water ice. Science, 273, pp. 1843–1848. https://www.science.org/doi/10.1126/science.273.5283.1843

35. Trofimuk A.A., Makogon Yu.F., Yakushev V.S. (1986). Influence of the dynamics of hydrate formation zones on the temperature regime of rocks in the permafrost area. Geologiya i Geofizika, 11, pp. 3–10. (In Russ.)

36. Varenichev A.A., Gromova M.P., Potapov I.I. (2022). Forecast resources of methane from gas hydrate deposits. Problemy Okruzhayushchey Sredy i Prirodnykh Resursov, 8, pp. 3–44. (In Russ.) https://doi.org/10.36535/0235-5019-2022-08-1

37. Wei N., Pei J., Li H., Zhou Sh., Zhao, J., Kvamme B., Coffin R.B., Zhang L., Zhang Y., Xue J. (2024). Classification of natural gas hydrate resources: Review, application and prospect. Gas Science and Engineering, 124, 205269. https://doi.org/10.1016/j.jgsce.2024.205269

38. Yakushev V.S. (2009). Natural gas and gas hydrates in the cryolithozone. Moscow: VNIIGAZ, 192 p. (In Russ.)

39. Yakushev V.S., Chuvilin E.M. (2000). Natural gas and hydrate accumulation within permafrost in Russia. Cold Regions Science and Technology, 149, pp. 46–50. https://doi.org/10.1016/S0165-232X(00)00012-4

40. Yakushev V.S., Gafarov, S.M., Karnaukhov N.A. et al. (2014). Gas Hydrates in the Arctic and the World Ocean: Occurrence features and development prospects. Moscow: Nedra, 251 p. (In Russ.)

41. Yamamoto K., Boswell R., Collett T., Dallimore S., Lu H. (2022). Review of past gas production attempts from subsurface gas. Energy & Fuels, 36 (10), pp.5047–5062. https://doi.org/10.1021/acs.energyfuels.1c04119

42. Yang J., Hassanpouryouzband A., Tohidi B., Chuvilin E., Bukhanov B., Istomin V., Cheremisin A. (2019). Gas hydrates in permafrost: distinctive effect of gas hydrates and ice on the geomechanical properties of simulated hydrate-bearing permafrost sediments. JGR Solid Earth, 124, pp. 2551–2563. https://doi.org/10.1029/2018JB016536


Review

For citations:


Chuvilin E.M., Bukhanov B.A., Grebenkin S.I., Zhmaev M.V. Effect of gas hydrates on physical properties of permafrost. Georesursy = Georesources. 2025;27(3):101-110. (In Russ.) https://doi.org/10.18599/grs.2025.3.8

Views: 13


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1608-5043 (Print)
ISSN 1608-5078 (Online)