Study of methane hydrate dissociation under subzero temperatures
https://doi.org/10.18599/grs.2025.3.9
Abstract
The use of cryolithozone resources is currently one of the priority issues on the agenda of scientific and technological and, consequently, economic development of the Russian Federation. The available research results confirm the possibility of using cryogenic processes and phenomena in engineering, agriculture, conservation of biological diversity and a number of other areas, such as, for example, for storing gas in a solid hydrate state. This paper presents the results of studies of methane hydrate dissociation obtained in systems with the presence of promoting additives in order to determine the conditions and efficiency of gas storage in a solid hydrate state. Dissociation of gas hydrates formed from liquid solutions or dispersed systems was carried out by experimental methods using a high-pressure reactor in the temperature range of 263–268 K, i.e. close to the temperatures of permafrost occurrence. Thus, it was shown that methane hydrates formed from liquid solutions of surfactants - soy lecithin and SDS, has high porosity, as a result of which it is practically incapable of self-preservation and cannot be used in the implementation of gas hydrate technologies for gas storage. At the same time, the addition of water-soluble polymer polyvinyl alcohol in a concentration of 0.3 wt.% leads to the growth of a denser methane hydrate capable of self-preservation at a temperature of 268 K. The data obtained in the work can be used in the development of gas hydrate technologies for storing natural gas in a solid hydrate state.
Keywords
About the Authors
N. S. MolokitinaRussian Federation
Nadezhda S. Molokitina – Cand. Sci. (Engineering), Leading Researcher
86 Malygina st., Tyumen, 625026
P. Zhingel
Russian Federation
Polina Zhingel – Junior Researcher
86 Malygina st., Tyumen, 625026
K. A. Pletneva
Russian Federation
Klavdiya A. Pletneva – Junior Researcher
86 Malygina st., Tyumen, 625026
References
1. Bhattacharjee G., Veluswamy H.P., Kumar A., Linga, P. (2021). Stability analysis of methane hydrates for gas storage application. Chemical Engineering Journal, 415, 128927. DOI: 10.1016/j.cej.2021.128927
2. Bondarev E.A., Rozhin I.I., Popov V.V., Argunova K.K. (2015). Assessment of possibility of natural gas hydrates underground storage in permafrost regions. Earth`s Cryosphere, 19(4), pp. 58–67. (In Russ.)
3. Chuvilin E., Bukhanov B., Davletshina D., Grebenkin S., Istomin V. (2018). Geosciences, 8(431), 12 p. DOI: 10.3390/geosciences8120431
4. Chuvilin E., Davletshina D., Bukhanov B., Mukhametdinova A., Istomin V. (2022). Formation of Metastability of Pore Gas Hydrates in Frozen Sediments: Experimental Evidence. Geosciences, 12(11), 419. DOI: 10.3390/geosciences12110419
5. Chuvilin E.M., Kozlova E.V. (2005). Experimental estimation of hydratebearing sediments stability. Proc. 5th International Conference on Gas Hydrate Thermodynamic Aspects, Trondheim, Norway, 13–16 June 2005.
6. Circone, S., Stern, LA, & Kirby, SH (2004). Влияние повышенного давления метана на диссоциацию гидрата метана. American Mineralogist, 89(8-9), pp. 1192–1201. doi:10.2138/am-2004-8-905
7. Drachuk, A.O. (2018). Kinetics of formation and dissociation of gas hydrates in aqueous dispersed media stabilized by silicon dioxide. Cand. Sci. Diss. Tyumen, 118 p. (In Russ.)
8. Ershov E.D., Lebedenko Y.P., Chuvilin E.M., Istomin V.A., Yakushev V.S. (1991). Peculiarities of gas hydrate existence in the permafrost zone. Doklady Akademii nauk SSSR, 321, pp. 788–791.
9. Ershov S.E., Nersesov S.V., Sokolovsky R.A., Doroshenko A.A., Ershov A.V., Karymova Ya.O. (2022). On the possibility of preserving relic hydrates below the stability zone in the low-permeability layers of the berezovskaya formation of the north of Western Siberia. Moscow University Bulletin. Series 4. Geology, (3), pp. 37–44. (In Russ.) https://doi.org/10.33623/0579-9406-2022-3-37-44
10. Falenty A., Kuhs W.F., Glockzin M., Rehder G., (2014). “SelfPreservation” of CH4 hydrates for gas transport technology: pressure–temperature dependence and ice microstructures. Energy Fuels, 28(10), pp. 6275–6283. DOI: 10.1021/ef501409g
11. Hachikubo A., Takeya S., Chuvilin E., Istomin V. (2011). Preservation phenomena of methane hydrate in pore spaces. Phys. Chem. Chem. Phys., 13, pp. 17449–17452. https://doi.org/10.1039/c1cp22353d
12. Istomin V.A., Yakushev V.S., Makhonina N.A., Kwon V.G., Chuvilin E.M. (2006). Self-preservation phenomenon of gas hydrates. GAS Industry of Russia, 4, pp. 16–27.
13. Istomin, V.A., Yakushev, V.S. (1992). Gas Hydrates in Natural Conditions. Moscow: Nedra, 236 p. (In Russ.)
14. Kuvaiev, V.A., Kuzmin, G.A. (2018). Underground cryogenic seed storage in permafrost. Geologiya, geografiya i global’naya energiya, 4(71), pp. 150–155. (In Russ.)
15. Kuzmin, G.P. (2023). Devices and technologies for utilizing natural cryogenic resources. Uspekhi sovremennogo estestvoznaniya, 9, pp. 71–76. (In Russ.)
16. Kwon T.-H., Cho G.-C., Santamarin J.C. (2008). Gas hydrate dissociation in sediments: Pressure-temperature evolution. Geochem. Geophys. Geosyst., 9, Q03019. https://doi.org/10.1029/2007GC001920
17. Li X.Y., Zhong D.L., Englezos P., Lu Y.Y., Yan J., Qing S.L. (2021) Insights into the self-preservation effect of methane hydrate at atmospheric pressure using high pressure DSC. Journal of Natural Gas Science and Engineering, 86, pp. 1037–1038. DOI: 10.1016/j.jngse.2020.103738
18. Mel’nikov V.P., Molokitina N.S., Drachuk A. O., Pletneva K.A., Kibkalo A.A., Grigor’ev, B.V., Pandey G. (2023). Application of Soy Lecithin as a Promoter of Methane Hydrate Formation. Doklady Chemistry, 512(2), pp. 309–314. DOI: 10.1134/s001250082360075x
19. Mel’nikov V.P., Podenko L.S., Nesterov A.N., Drachuk A.O., Molokitina N.S., Reshetnikov A.M. (2016). Self-preservation of methane hydrates produced in “dry water”. Doklady Chemistry, 466(2), pp. 53–56. DOI: 10.17513/use.38105
20. Mimachi H., Takeya S., Gotoh Y., Yoneyama A., Hyodo K., Takeda T., Murayama T. (2016). Dissociation behaviors of methane hydrate formed from NaCl solutions. Fluid Phase Equilibria, 413, pp. 22–27. DOI: 10.1016/j.fluid.2015.10.029
21. Mironov, N.G. (1967). Construction and Operation of Underground Refrigerators. Moscow: Nauka, 71 p. (In Russ.)
22. Molokitina N.S., Drachuk A.O. (2022). Effect of PVA contained in ice on methane hydrate formation and gas storage. Journal of Natural Gas Science and Engineering, 97(6), 104339. DOI: 10.1016/j.jngse.2021.104339
23. Nakai S. (2012). Development of Natural Gas Hydrate (NGH) Supply Chain. Kuala lumpur world gas conference, 10 p.
24. Podenko L.S., Drachuk A.O., Molokitina N.S., Nesterov A.N. (2018). Effect of Silica Nanoparticles on Dry Water Gas Hydrate Formation and SelfPreservation Efficiency. Russian Journal of Physical Chemistry A, 92(2), pp. 255–261. DOI: 10.1134/S0036024418020188
25. Rozhin, I.I., Argunova, K.K. (2022). Simulation of subsurface natural gas storage in hydrate state within sub-permafrost water-bearing layers. Vestnik Severo-Vostochnogo federal’nogo universiteta im. M.K. Ammosova. Nauki o Zemle, 26(2), pp. 10–21. (In Russ.) DOI: 10.25587/SVFU.2022.26.2.002
26. Shagapov, V.Sh., Khasanov, M.K., Musakaev, N.G. (2008). Gas hydrate formation in a partially water-saturated porous reservoir during cold gas injection. Journal of Applied Mechanics and Technical Physics, 49(3), pp. 137–150. (In Russ.)
27. Sloan E.D., Koh C.A. (2007). Clathrate hydrates of natural gases. Thrid edition. Boca Raton: CRC Press, 730 p. https://doi.org/10.1201/9781420008494
28. Stern L., Circone S., Kirby S.H., Durham W. (2003) Temperature, pressure, and compositional effects on anomalous or “self” preservation of gas hydrates. Can. J. Phys., 81, pp. 271–283. https://doi.org/10.1139/p03-018
29. Takeya S., Fujihisa H., Gotoh Y., Istomin V., Chuvilin E., Sakagami H., Hachikubo A. (2013). Methane clathrate hydrates formed within hydrophilic and hydrophobic porous media: Kinetics of dissociation and distortion of host structure. J. Phys. Chem. C, 117, pp. 7081–7085. https://doi.org/10.1021/jp312297h T
30. akeya S., Yoneyama A., Ueda K., Mimachi H., Takahashi M., Sano K., Hyodo K., Takeda T., Gotoh Y. (2012). Anomalously preserved clathrate hydrate of natural gas in pellet form at 253 K. The Journal of Physical Chemistry C, 116(26), pp. 13842–13848. DOI: 10.1021/jp302269v
31. Takeya S., Ebinuma T., Uchida T., Nagao J., & Narita H. (2002). Selfpreservation effect and dissociation rates of CH4 hydrate. Journal of Crystal Growth, 237–239, pp. 379–382. doi: 10.1016/s0022-0248(01)01946-7
32. Watanabe S, Takahashi S, Mizubayashi H, Murata S, Murakami H. (2008). A demonstration project of NGH land transportation system. Proc. 6th international conference on gas hydrates, рр. 6–10.
33. Yakushev, V.S. (1988). Experimental study of methane hydrate dissociation kinetics at subzero temperatures. Gazovaya promyshlennost’. Seriya: razrabotka i ekspluatatsiya gazovykh i gazokondensatnykh mestorozhdeniy, 4, pp. 11–14. (In Russ.)
34. Zhang Y., Zhao J., Bhattacharjee G., Xu H., Yang M., Kumar R., Linga P. (2022). Synthesis of methane hydrate at ambient temperature with ultra-rapid formation and high gas storage capacity. Energy and Environmental Science, 15(12), pp. 5362–5378. DOI: 10.1039/D2EE01968J
Review
For citations:
Molokitina N.S., Zhingel P., Pletneva K.A. Study of methane hydrate dissociation under subzero temperatures. Georesursy = Georesources. 2025;27(3):111-120. (In Russ.) https://doi.org/10.18599/grs.2025.3.9