Preview

Georesources

Advanced search

Application of Toroidal Coils to Obtain Electrical Resistivity of Core Samples: Mathematical Modeling

https://doi.org/10.18599/grs.2024.3.16

Abstract

We consider the capability of evaluating the specific electrical resistivity of a cylindrical core by means of a transmitter-receiver system with toroidal coils placed around it. An algorithm for two-dimensional finite-difference modeling of electrical and magnetic signals from an external circular magnetic harmonic current equivalent to a toroidal coil has been developed and verified. We perform twodimensional numerical modeling of the real (in-phase) and imaginary (quadrature) part of the vertical component of the electric field and the tangential component of the magnetic field for a practically-significant range of core resistivities, the sample being located within an insulating or highly conductive tube with toroidal coils. Following the results of numerical simulation, the optimal length of the measuring system is selected, as well as the operating frequency and type of measured signals. The transformation of the latter into the apparent resistivity values of vertically inhomogeneous samples is proposed. Moreover, criteria have been established for the correspondence of the measured signals in thinlayered and equivalent electrically macroanisotropic samples when changing the resistivity contrast and thickness of the interlayers.

About the Authors

M. I. Epov
Trofimuk Institute of Petroleum Geology and Geophysics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Mikhail I. Epov – Dr. Sci. (Engineering), Professor, RAS Academician, Chief Researcher

3 Ac. Koptyug av., Novosibirsk, 630090



V. G. Mamyashev
Industrial University of Tyumen
Russian Federation

Vener G. Mamyashev – Cand. Sci. (Geology and Mineralogy), Associate Professor

38 Volodarskogo st., Tyumen, 625000



I. V. Mikhaylov
Trofimuk Institute of Petroleum Geology and Geophysics of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Russian Federation

Igor V. Mikhaylov – Cand. Sci. (Engineering), Senior Researcher; Associate Professor

3 Ac. Koptyug av., Novosibirsk, 630090

1 Pirogova st., Novosibirsk, 630090



I. V. Surodina
Trofimuk Institute of Petroleum Geology and Geophysics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Irina V. Surodina – Cand. Sci. (Physics and Mathematics), Senior Researcher

3 Ac. Koptyug av., Novosibirsk, 630090



M. N. Nikitenko
Trofimuk Institute of Petroleum Geology and Geophysics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Marina N. Nikitenko – Dr. Sci. (Engineering), Lead Researcher

3 Ac. Koptyug av., Novosibirsk, 630090



References

1. Ahmed H.M., Ahmed H.A.M., Adewuyi S.O. (2021). Characterization of Microschist Rocks under High Temperature at Najran Area of Saudi Arabia. Energies, 14(22), 7612. https://doi.org/10.3390/en14227612

2. Ashrafi J., Faramarzi L., Darbor M., Sharifzadeh M., Ferdosi B. (2020). The effects of temperature on mechanical properties of rocks. International Journal of Mining and Geo-Engineering, 54(2), pp. 147–152. https://doi.org/10.22059/ijmge.2019.271982.594771

3. Ben Aoun N., Kouki A., Aouina N., Haj Amara A.B. (2018). Radial Electrical Resistivity Measurements of Rocks on Laboratory Core Samples Using an Electromagnetic Sensor: Macro and Micro Eddy Currents. Journal of Sensors, 2018, 6435070. https://doi.org/10.1155/2018/6435070

4. Elsayed M., Isah A., Hiba M., Hassan A., Al-Garadi K., Mahmoud M., El‑Husseiny A., Radwan A.E. (2022). A review on the applications of nuclear magnetic resonance (NMR) in the oil and gas industry: laboratory and field‑scale measurements. Journal of Petroleum Exploration and Production Technology, 12, pp. 2747–2784. https://doi.org/10.1007/s13202-022-01476-3

5. Epov M.I., Nikitenko M.N., Glinskikh V.N. (2018). Mathematical substantiation of a new electromagnetic tool with toroidal coils for high-resolution logging of oil and gas wells. Vestnik NSU. Series: Information Technologies, 16(1), pp. 113–129. (In Russ.) https://doi.org/10.25205/1818-7900-2018-16-1-113-129

6. Epov M.I., Shurina E.P., Dobrolyubova D.V., Kutishcheva A.Yu., Markov S.I., Shtabel N.V., Shtanko E.I. (2023). Determination of the Effective Electrical Conductivity of a Fluid-Saturated Core from Computed Tomography Data. Izvestiya, Physics of the Solid Earth, 59(5), pp. 672–681. http://dx.doi.org/10.31857/S0002333723050046

7. Fadeeva I.I., Duchkov A.A., Manakov A.Y., Aunov D.E. (2020). Quantification of СО 2 hydrate in laboratory samples using a two-needle probe. Geofizicheskie issledovanija = Geophysical Research, 21(2), pp. 61–77. (In Russ.) http://dx.doi.org/10.21455/gr2020.2-5

8. Gerke K.M., Korost D.V., Karsanina M.V., Korost S.R., Vasiliev R.V., Lavrukhin E.V., Gafurova D.R. (2021). Modern approaches to pore space scale digital modeling of core structure and multiphase flow. Georesursy = Georesources, 23(2), pp. 197–213. (In Russ.) https://doi.org/10.18599/grs.2021.2.20

9. Gu B., Wan Z., Zhang Y., Ma Y., Xu X.B. (2020). Influence of Real-Time Heating on Mechanical Behaviours of Rocks. Advances in Civil Engineering, 2020, 8879922. https://doi.org/10.1155/2020/8879922

10. Karinskiy A.D. (2018). Electromagnetic field in electrically anisotropic medium models. Мoscow: GEOS, 184 p. (In Russ.)

11. Kästner F., Klaeschen D., Berndt C., Pierdominici S., Hedin P. (2022). Anisotropic velocity models for (3-D) seismic imaging of the Lower Seve Nappe in Jämtland, Sweden. Geophysical Journal International, 228(1), pp. 66–77. https://doi.org/10.1093/gji/ggab339

12. Kästner F., Pierdominici S., Elger J., Zappone A., Kück J., Berndt C. (2020). Correlation of core and downhole seismic velocities in high-pressure metamorphic rocks: A case study for the COSC-1 borehole, Sweden. Solid Earth, 11(2), pp. 607–626. https://doi.org/10.5194/se-11-607-2020

13. Khachkova T.S., Lisitsa V.V., Reshetova G.V., Tcheverda V.A. (2020). Numerical estimation of electrical resistivity in digital rocks using GPUs. Vychislitel’nye metody i programmirovanie = Numerical Methods and Programming, 21(3), pp. 306–318. (In Russ.) https://doi.org/10.26089/NumMet.v21r326

14. Khachkova T.S., Lisitsa V.V., Sotnikov O.S., Islamov I.A., Ganiev D.I. (2023). A new technique for numerical estimation of the absolute permeability of rocks from their microtomographic images. Geofizika = Geophysics, 1, pp. 34–40. (In Russ.) https://doi.org/10.34926/geo.2023.46.58.005

15. Kim J.-W., Hong C.-H., Kim J.-S., Chong S.-H. (2021). Theoretical and Numerical Study on Electrical Resistivity Measurement of Cylindrical Rock Core Samples Using Perimeter Electrodes. Energies, 14(14), 4382. https:// doi.org/10.3390/en14144382

16. Li J., Ke S., Yin C., Kang Z., Jia J., Ma X. (2019). A laboratory study of complex resistivity spectra for predictions of reservoir properties in clear sands and shaly sands. Journal of Petroleum Science and Engineering, 177, pp. 983–994. https://doi.org/10.1016/j.petrol.2019.01.061

17. Liu H.Q., Tian J., Youming D., Chunning Q. (2016). Study of the lowfrequency dispersion of permittivity and resistivity in tight rocks. International Journal of Petrochemical Science & Engineering, 1(3), pp. 55‒61. https:// doi.org/10.15406/ipcse.2016.01.00011

18. Luc Leroy M.N., Marius F.W., François N. (2021). Experimental and Theoretical Investigations of Hard Rocks at High Temperature: Applications in Civil Engineering. Advances in Civil Engineering, 2021, 8893944. https:// doi.org/10.1155/2021/8893944

19. Mezin A.A., Shumskayte M.Y., Glinskikh V.N., Golikov N.A., Chernova E.S. (2020). Reservoir properties of drill cutting by the nuclear magnetic resonance relaxometry and dielectric spectroscopy data. Earth Sciences and Subsoil Use, 43(3), pp. 364–374. (In Russ.) http://dx.doi.org/10.21285/2686-9993-2020-43-3-364-374

20. Morte M., Hascakir B. (2019). Characterization of complex permittivity for consolidated core samples by utilization of mixing rules. Journal of Petroleum Science and Engineering, 181, 106178. https://doi.org/10.1016/j.petrol.2019.06.042

21. Ponomarev A.A., Kadyrov М.А., Tugushev O.A., Drugov D.A., Vaganov Y.V., Leontiev D.S., Zavatsky M.D. (2024). Digital core reconstruction research: challenges and prospects. Geology, Ecology, and Landscapes, 8(1), pp. 49–56. https://doi.org/10.1080/24749508.2022.2086201

22. Reshetova G.V., Anchugov A.V. (2021). Digital Core: Time Reversal Modeling of Acoustic Emission Events. Russian Geology and Geophysics, 62(4), pp. 486–494. http://dx.doi.org/10.2113/RGG20194152

23. Samarskii A.A., Nikolaev E.S. (1978). Methods for Solving Grid Equations. Мoscow: Nauka, 592 p. (In Russ.)

24. Sharifi J., Nooraiepour M., Amiri M., Mondol N.H. (2023). Developing a relationship between static Young’s modulus and seismic parameters. Journal of Petroleum Exploration and Production Technology, 13, pp. 203–218. https://doi.org/10.1007/s13202-022-01546-6

25. Shumskayte M., Mezin A., Chernova E., Burukhina A., Golikov N., Melkozerova S. (2022). Estimating Water Content in Water–Oil Mixtures and Porous MEDIA They Saturate: Joint Interpretation of NMR Relaxometry and Dielectric Spectroscopy. Geosciences, 12(4), 179. https://doi.org/10.3390/geosciences12040179

26. Shumskayte M.Y., Yan P.A., Golikov N.A. (2022). Relaxation characteristics of core samples on the example of parametric well: database of formation properties by NMR-data. Russian Journal of Geophysical Technologies, 1, pp. 88–98. (In Russ.) https://doi.org/10.18303/2619-1563-2022-1-88

27. Svetov B.S. (1984). Electrodynamic foundations of quasi-stationary geoelectrics. Moscow: IZMIRAN, 183 p. (In Russ.)


Review

For citations:


Epov M.I., Mamyashev V.G., Mikhaylov I.V., Surodina I.V., Nikitenko M.N. Application of Toroidal Coils to Obtain Electrical Resistivity of Core Samples: Mathematical Modeling. Georesursy = Georesources. 2024;26(3):151-161. (In Russ.) https://doi.org/10.18599/grs.2024.3.16

Views: 493


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1608-5043 (Print)
ISSN 1608-5078 (Online)