Preview

Georesources

Advanced search

Results of Studying the Material Composition and U-Pb (LA-ICP-MS) Age of Detrital Zircons From Terrigenous Rocks of the Vanavara and Oskobinskaya Formations of the Kamov Arch of the Baikit Antelise

https://doi.org/10.18599/grs.2025.1.26

Abstract

   The paper presents the results of studies on sandstones from the Vanavara and Oskobinskaya formations, which are part of the Nepa and Torskiy regional stratigraphic horizons, respectively. These formations were studied using the core from the Yur-92 deep well, located within the Kamov Arch of the Baikit Anteclise on the Siberian Platform. A detailed lithological description of a core with a total thickness of 89 meters is provided. For 13 sandstone samples, the following studies were conducted: petrographic analysis of thin sections, definition of major petrogenic oxide content, definition of impurity and trace element content using mass spectrometry with inductively coupled plasma, and geochronological (U-Pb) analysis of detrital zircon grains. It was found that the Vanavara formation is characterized by a terrigenous composition, while the Oskobinskaya formation is composed of terrigenous, sulfate, and carbonate rocks and can be divided into three members. According to the results of petrographic analysis of rocks from the Vanavara and Oskobinskaya formations, there is generally a similarity in terms of the degree of roundness and sorting of detrital material, as well as the composition of both rock-forming and accessory minerals including rock fragments such as quartzites, micaschists, and granitoids (both metamorphic and igneous rock types), as well as clay rocks, likely argillites. The material composition of all the studied sandstones from the Vanavara and Oskobinskaya formations corresponds to that of arkoses. Based on a set of lithogeochemical characteristics, it appears that the source material for the deposits of the Vanavara formation was primarily derived from rocks with an acidic composition, while the terrigenous rocks from the Oskobinskaya formation may have originated from both acidic and intermediate rocks. U-Pb (LA-ICP-MS) dating of detrital zircon grains from terrigenous rocks of the Vanavara Formation indicates that the main source of sediments in the basin where they were deposited was Archean and Early Proterozoic rocks from the Siberian Platform basement. The Oskobinskaya Formation was deposited as a result of the erosion of Archean, Early Proterozoic, and late Riphean rocks that formed the basement of the Siberian platform and the northern segment of the Central Asian fold belt, as well as possibly rocks that make up the East Angara Block of the Yenisei Ridge. Based on the characteristics of the Vanavara and Oskobinskaya formations, combined with the results of zircon dating and published data on lithofacies, it is suggested that the Vanavara formation was deposited on the passive margin of the Siberian platform. Then, there was a transformation into a peripheral foreland basin in which terrigenous rocks from the Oskobinskaya formation accumulated.

About the Authors

A. V. Plusnin
RN-KrasnoyarskNIPIneft LLC; Almetyevsk State Technological University “Petroleum High School”
Russian Federation

Aleksey V. Plusnin, Cand. Sci. (Geology and Mineralogy), Sedimentology Expert, Leading Researcher

Laboratory of Geology and Stratigraphy of Sedimentary Basins

423450; 2 Lenin st.; Krasnoyarsk; Almetyevsk



Z. L. Motova
Institute of Earth Crust of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Zinaida L. Motova, Cand. Sci. (Geology and Mineralogy), Senior Researcher

Laboratory of Palaeogeodynamics

664033; 128 Lermontova st.; Irkutsk



I. V. Afonin
National Research Tomsk State University
Russian Federation

Igor V. Afonin, Cand. Sci. (Geology and Mineralogy), Senior Researcher

Research Laboratory of Structural Petrology and Minerageny

634050; 36 Lenin ave.; Tomsk



E. M. Tomilina
Perm State National Research University
Russian Federation

Elena M. Tomilina, Senior Lecturer

Department of Mineralogy and Petrography

614990; 15 Bukirev st.; Perm



D. A. Staroselets
Gudgeo LLC
Russian Federation

Dmitriy A. Staroselets, Deputy General Director for Development

625000; 57 Respublika st.; Tyumen



E. E. Belozerov
East Siberian Oil and Gas Company JSC
Russian Federation

Evgeny E. Belozerov, Leading Specialist

Department of Geological Exploration, Resource Base and Licensing; Geological Exploration Department

660049; 36 Mira ave.; Krasnoyarsk



I. R. Khalikov
East Siberian Oil and Gas Company JSC
Russian Federation

Irik R. Khalikov, Head of Department

Department of Geological Exploration, Resource, Base and Licensing; Geological Exploration Department

660049; 36 Mira ave.; Krasnoyarsk



M. V. Shaldybin
TomskNIPIneft PJSC
Russian Federation

Mikhail V. Shaldybin, Cand. Sci. (Geology and Mineralogy), Head of Group

Sedimentology Group

634027; 72 Prospekt Mira; Tomsk



I. A. Yashin
RN-KrasnoyarskNIPIneft LLC
Russian Federation

Igor A. Yashin, Cand. Sci. (Geology and Mineralogy), Head of Department

Regional Geology and Geological Exploration Department

660098; 65, 9 Maya st.; Krasnoyarsk



V. A. Fomin
Institute of Earth Crust of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Vladimir A. Fomin, Postgraduate student

664033; 128, Lermontova st.; Irkutsk



References

1. Black L.P., Kamo S.L., Allen C.M., Davis D.W., Aleinikoff J.N., Valley J.W., Mundil Roland, Campbell I.H., Korsch R.J., Williams I.S., Foudoulis, C. (2004). Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID–TIMS, ELA–ICP–MS and oxygen isotope documentation for a series of zircon standards. Chemical Geology, 205, pp. 115–140. doi: 10.1016/j.chemgeo.2004.01.003

2. Boynton W.V. (1984) Geochemistry of the rare earth elements: meteorite studies. Henderson P. (ed.). Rare earth element geochemistry. Elsevier, pp. 63–114. doi: 10.1016/B978-0-444-42148-7.50008-3

3. Cohen K.M., Harper D.A.T., Gibbard P.L., Car N. (2022). The ICS International Chronostratigraphic Chart, February. http://www.stratigraphy.org/ICSchart/ChronostratChart2022-02.pdf

4. Cox R., Lowe D.R.A. (1995). Conceptual review of regional-scale controls on the composition of clastic sediment and the co-evolution of continental blocks and their sedimentary cover. Journal of Sedimentary Research, 1, pp. 1–12.

5. Decisions of the Fourth Interdepartmental Regional Meeting on Clarification and Completion of Stratigraphic Schemes of the Vendian and Cambrian of the Interior of the Siberian Platform (1989). Novosibirsk: SNIIGGiMS, 40 p. (In Russ.)

6. Donskaya T.V. (2020). Assembly of the Siberian Craton: Constraints from Paleoproterozoic granitoids. Precambrian Res., 348 p. doi: 10.1016/j.precamres.2020.105869

7. Donskaya T.V. Gladkochub D.P., Fedorovsky V.S., Sklyarov E.V., Cho M., Sergeev S.A., Demonterova E.I., Mazukabzov A.M., Lepekhina E.N., Cheong W., Kim J. (2017). Pre-collisional (> 0.5 Ga) complexes of the Olkhon terrane (southern Siberia) as an echo of events in the Central Asian Orogenic Belt. Gondwana Research, 42, pp. 243–263. doi: 10.1016/j.gr.2016.10.016

8. Donskaya T.V., Gladkochub D.P. (2021). Post-collisional magmatism of 1.88–1.84 Ga in the southern Siberian Craton : An overview. Precambrian Res., 367 p. doi: 10.1016/j.precamres.2021.106447

9. Fomin V.A., Vakhromeev A.G., Motova Z.L., Strunov A.V., Mashenkin D.V., Fomina V.V., Plusnin A.V. (2024). Peculiarities of geological structure and prospects of oil and gas bearing Riphean and Vendian sedimentary sequences of the south-eastern part of the Kamovsky vault of the Baikitsa anteclise. Geodinamika i tektonofizika = Geodynamics and Tectonophysics, 15(6), pp. 1–16. (In Russ.) doi: 10.5800/GT-2024-15-6-0802

10. General stratigraphic scale. (2024). Moscow: VSEGEI. (In Russ.) https://vsegei.ru/ru/about/msk/str_scale/os_scale-03-24.pdf

11. Gladkochub D.P., Donskaya T.V., Stanevich A.M., Pisarevsky S.A., Zhang S., Motova Z.L., Mazukabzov A.M., Li H. (2019). U-Pb detrital zircon geochronology and provenance of Neoproterozoic sedimentary rocks in southern Siberia: New insights into breakup of Rodinia and opening of PaleoAsian Ocean. Gondwana Research, 65, pp. 1–16. doi: 10.1016/j.gr.2018.07.007

12. Gorokhov I.M. Vasilieva I.M. Kuznetsov A.B. Rizvanova N.G. Konstantinova G.V. (2023). The method of stepwise dissolution in the study of isotopic chemostratigraphy and geochronology of Riphean rocks of the Baikitsky Rise. Geokhimiya = Geochemistry, 68(7), pp. 669–686. (In Russ.) doi: 10.31857/S0016752523070038

13. Gorokhov I.M., Kuznetsov A.B., Vasilieva I.M., Kramchaninov A.Y., Rizvanova N.G., Konstantinova G.V. (2021). Pb-Pb-age of carbonate rocks of the Kamov series, Baikitskaya anteclise of the Siberian Platform. Doklady RAN. Nauki o Zemle, 500(1), pp. 12–17. (In Russ.) doi: 10.1134/S1028334X21090105

14. Jackson S.E., Pearson N.J., Grifn W.L., Belousova E.A. (2004). The application of laser ablationinductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chemical Geology, 211, pp. 47–69. doi: 10.1016/j.chemgeo.2004.06.017

15. Khabarov E.M., Ponomarchuk V.A., Morozova I.P., Varaksina I.V., Saraev S.V. (2002). Fluctuations of the Sea Level and Carbon Isotope Composition of Carbonates in a Riphean Petroliferous Basin on the Western Margin of the Siberian Craton (Baikit Uplift). Russian Geology and Geophysics, 43(3), pp. 211–239.

16. Khabarov E.M., Varaksina I.V. (2011). The Structure and Depositional Environments of Mesoproterozoic Petroliferous Carbonate Complexes in the Western Siberian Craton. Russian Geology and Geophysics, 52(8), pp. 923–944. doi: 10.1016/j.rgg.2011.07.014

17. Kharakhinov V.V., Shlenkin S.I. (2011). Oil and gas content of Precambrian strata of East Siberia. Moscow: Nauchny Mir, 420 p. (In Russ.)

18. Khrushcheva M.O., Tishin P.A., Chernyshov A.I. (2019). Geochemical characterization of brines and modern evaporites of the Taloe Ozero tract (Republic of Khakassia). Izvestiya Irkutskogo gosudarstvennogo universiteta. Series of Earth Sciences, 30, pp. 130–140. (In Russ.) doi: 10.26516/2073-3402.2019.30.130

19. Kraevsky B.G., Yakshin M.S., Nagovitsyn K.E. (2018). Regional stratigraphic scheme of the Riphean deposits of the western part of the Siberian platform. Geologiya i mineral’no-syr’yevyye resursy Sibiri = Geology and mineral resources of Siberia, (5), pp. 4–14. (In Russ.)

20. Kvachko S.K., Kozyaev A.A. (2017). Sedimentation conditions of the Vanavara and Oskobinskaya formations within one of the fields in Eastern Siberia. Modern problems of sedimentology in oil and gas engineering : Proc. III All-Russian scientific and practical sedimentological conference. Tomsk: Central Scientific Research Institute of Petroleum Industry, pp. 191–194. (In Russ.)

21. Layout of the regional correlation stratigraphic scheme of the Vendian sediments of the Siberian Platform (2022). Novosibirsk: SNIIGGiMS, 159 p. (In Russ.)

22. Logvinenko N.V. (1974). Petrography of sedimentary rocks (with the basics of research methodology : a textbook for students of geol. specialized universities. Moscow: Vysshaya shkola, 400 p. (In Russ.)

23. Melnikov N.V. (1982). Correlation of subsalt oil-and-gas bearing sediments in the south of the Siberian Platform. Geologiya i geofizika = Geology and Geophysics, (3), pp. 29–41. (In Russ.)

24. Melnikov N.V. (2018). Vendian-Cambrian saline basin of the Siberian Platform (Stratigraphy, history of development). 2<sup>nd</sup> ed. Novosibirsk: SNIIGGiMS, 177 p. (In Russ.)

25. Melnikov N.V., Yakshin M.S., Shishkin B.B., Efimov A.O., Karlova G.A. (2005). Stratigraphy of oil and gas bearing basins of Siberia. Riphean and Vendian of the Siberian Platform and its folded frame. Ed. A.E. Kontorovich. Novosibirsk: Geo, 432 p. (In Russ.)

26. Melnikov N.V., Yakshin M.S., Shishkin B.B., Efimov A.O., Karlova G.A., Kilina L.I., Konstantinova L.N., Kochnev B.B., Kraevsky B.G., Melnikov P.N., Nagovitsin K.E., Postnikov A.A., Ryabkova L.V., Terleev A.A., Khabarov E.M. (2005). Stratigraphy of oil and gas basins of Siberia. Riphean and Vendian Siberian Platform and its folded framing. Novosibirsk: Geo, 428 p. (In Russ.)

27. Methodological recommendations for correlation of well sections (2013). Edited by I.S. Gutman. Moscow: Nedra, 112 p. (In Russ.)

28. Motova Z.L., Plusnin A.V. (2022). Sources of matter and sedimentation conditions of Vendian terrigenous rocks in the south of the NepskoBotuobinskaya anteglise (Siberian Platform). Geodinamika i tektonofizika = Geodynamics and Tectonophysics, 13(5). (In Russ.) doi: 10.5800/GT-2022-13-5-0670

29. Nesbitt H.W., Young G.M. (1982). Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299, pp. 715–717. doi: 10.1038/299715a0

30. Paces J.B., Miller J.D. (1993). Precise U-Pb Ages of the Duluth Complex and Related Mafic Intrusions, Northeastern Minnesota: Geochronological Insights to Physical, Petrogenetic, Paleomagnetic, and Tectonomagmatic Processes Associated With the 1.1 Ga Midcontinent Rift System. Journal of Geophysical Research, 98, pp. 13997–14013. doi: 10.1029/93JB01159

31. Pettijohn F.I., Potter P.E., Siever R. (1972). Sand and sandstone: New York, Springer, 618 p. doi: 10.1007/978-1-4615-9974-6

32. Plusnin A.V., Motova Z.L., Valeev R.R., Tomilina E.M., Fomin V.V. (2024). Composition and conditions of formation of terrigenous rocks of the Nepskaya Formation of Vendian age in the central part of the NepskoBotuobinskaya Anticlise (based on the results of core studies of well VCh-3X). Geosfernyye issledovaniya = Geospheric Research, in revision. (In Russ.)

33. Powerman V.I., Buyantuev M.D., Ivanov A.V. (2021). A Review of Detrital Zircon Data Treatment, and Launch of a New Tool ‘Dezirteer’ along with the Suggested Universal Workflow. Chemical Geology, 583, pp. 119–139. doi: 10.1016/j.chemgeo.2021.120437

34. Priyatkina N.S., Kuznetsov N.B., Rudko S.V., Shatsillo A.V., Khudoley A.K., Romaniuk T.V., Maslov, A.V. (2019) The Pogoryu Formation of the Proterozoic of the Yenisei Ridge: age and sources of drift according to U-Pbisotope dating of clastic zircons. Doklady RAN, 484, pp. 195–199. (In Russ.) doi: 10.1134/S1028334X19010136

35. Rojas-Agramonte Y. Kröner A., Demoux A., Xia X., Wang W., Donskaya T., Liu D., Sun M. (2011). Detrital and xenocrystic zircon ages from Neoproterozoic to Palaeozoic arc terranes of Mongolia: Significance for the origin of crustal fragments in the Central Asian Orogenic Belt. Gondwana Research, 19(3), pp. 751–763. doi: 10.1016/j.gr.2010.10.004

36. Rollinson H.R. (1994). Using geochemical data: evaluation, presentation, interpretation. Essex. London Group UK Ltd, 352 p.

37. Romanov M., Sovetov Ju.K., Vernikovsky V.A., Rosenbaum G., Wilde S.A., Vernikovskaya A.E., Matushkin N.Yu., Kadilnikov P.I. (2021). Late Neoproterozoic evolution of the southwestern margin of the Siberian Craton: evidence from sedimentology, geochronology and detrital zircon analysis. International Geology Review, 63(13), 1658‒1681. doi: 10.1080/00206814.2020.1790044

38. Samsonov A.V., Postnikov A.V., Spiridonov V.A., Larionova Y.O., Larionov A.N., Travin A.V., Postnikova O.V., Solovieva N.V., Sabirov I.A., Spiridonov I.V. (2021). Neoarchean granitoids in the west of the Tunguska superterrane, the basement of the Siberian Platform: geochronology, petrology, and tectonic significance. Petrologiya = Petrology, 29(5), pp. 451–477. (In Russ.) doi: 10.1134/S0869591121050064

39. Sovetov Y.K. (2018). Sedimentology and stratigraphic correlation of Vendian sediments in the southwestern Siberian Platform: outstanding contribution of an external source of clastic material to the formation of sedimentary systems. Litosfera = Lithosphere, 18(1), pp. 20–45. (In Russ.) doi: 10.24930/1681-9004-2018-18-1-020-045

40. Stern R.A., Bodorkos S., Kamo S.L., Hickman A.H., Corfu F. (2009). Measurement of SIMS Instrumental Mass Fractionation of Pb Isotopes During Zircon Dating. Geostandards and Geoanalytical Research, 33, pp. 145–168. doi: 10.1111/j.1751-908X.2009.00023.x

41. Wiedenbeck M., Alle P., Corfu F., Griffin W.L., Meier M., Oberli F., Von Quadt A., Roddick, J.C., Spiegel W. (1995). Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostandards Newsletter, 19, pp. 1–23. doi: 10.1111/j.1751-908X.1995.tb00147.x

42. Zaitseva, T.S., Kuznetsov, A.B., Ivanova, N.A., Maslennikov, M.A., Pustylnikova, V.V., Turchenko, T.L., Nagovitsin, K.E. (2019). Rb-Sr-age of Riphean glauconites of the Riphean glauconites of the Kamov series, Baikitsa anteclise of the Siberian Platform. Doklady RAN, 488(1), pp. 52–57. (In Russ.) doi: 10.31857/S0869-5652488152-57

43. Zaitseva, T.S., Priyatkina, N.S., Gorokhov, I.M., Kovach, V.P., Adamskaya, E.V., Gorokhovsky, B.M., Plotkina, Y.V. (2022). Clastic zircons from Riphean sediments of the Baikitsa Anteklise (Siberian platform): U-Th-Pb data. Pustovalov Readings 2022 : Proc. Conference dedicated to the 120<sup>th</sup> anniversary of Leonid Vasilievich Pustovalov. Moscow: I.M. Gubkin Russian State University of Oil and Gas (National Research University), pp. 48–50. (In Russ.)


Review

For citations:


Plusnin A.V., Motova Z.L., Afonin I.V., Tomilina E.M., Staroselets D.A., Belozerov E.E., Khalikov I.R., Shaldybin M.V., Yashin I.A., Fomin V.A. Results of Studying the Material Composition and U-Pb (LA-ICP-MS) Age of Detrital Zircons From Terrigenous Rocks of the Vanavara and Oskobinskaya Formations of the Kamov Arch of the Baikit Antelise. Georesursy = Georesources. 2025;27(1):236-260. (In Russ.) https://doi.org/10.18599/grs.2025.1.26

Views: 526


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1608-5043 (Print)
ISSN 1608-5078 (Online)